The sequence of such numbers is A006286 in the OEIS.
Granville and Soundararajan [GrSo98] have conjectured that at most $3$ powers of 2 suffice for all odd integers, and hence at most $4$ powers of $2$ suffice for all even integers. (The restriction to odd integers is important here - for example, Bogdan Grechuk has observed that $1117175146$ is not the sum of a prime and at most $3$ powers of $2$, and pointed out that parity considerations, coupled with the fact that there are many integers not the sum of a prime and $2$ powers of $2$ (see [9]) suggest that there exist infinitely many even integers which are not the sum of a prime and at most $3$ powers of $2$).
This is equivalent to asking whether every $n$ not divisible by $4$ is the sum of a squarefree number and a power of two. Erdős thought that proving this with two powers of 2 is perhaps easy, and could prove that it is true (with a single power of two) for almost all $n$.
Another stronger conjecture would be that the hypothesis $\lvert A\cap [1,N]\rvert \gg N^{1/2}$ for all large $N$ suffices.
Erdős and Sárközy conjectured the stronger version that if $A=\{a_1<a_2<\cdots\}$ and $B=\{b_1<b_2<\cdots\}$ with $a_n/b_n\to 1$ are such that $A+B=\mathbb{N}$ then $\limsup 1_A\ast 1_B(n)=\infty$.
See also [40].
An explicit construction was given by Jain, Pham, Sawhney, and Zakharov [JPSZ24].
Can the bound $O(\log N)$ be achieved? Must such an $A$ satisfy \[\liminf \frac{\lvert A\cap\{1,\ldots,N\}\rvert}{\log N}> 1?\]
Erdős [Er54] proved that such a set $A$ exists with $\lvert A\cap\{1,\ldots,N\}\rvert\ll (\log N)^2$ (improving a previous result of Lorentz [Lo54] who achieved $\ll (\log N)^3$). Wolke [Wo96] has shown that such a bound is almost true, in that we can achieve $\ll (\log N)^{1+o(1)}$ if we only ask for almost all integers to be representable.
The answer to the third question is yes: Ruzsa [Ru98c] has shown that we must have \[\liminf \frac{\lvert A\cap\{1,\ldots,N\}\rvert}{\log N}\geq e^\gamma\approx 1.781.\]
Ruzsa has observed that this follows immediately from the stronger fact proved by Plünnecke [Pl70] that (under the same assumptions) \[d_S(A+B)\geq \alpha^{1-1/k}.\]
In [Ru01] Ruzsa constructs an asymptotically best possible answer to this question (a so-called 'exact additive complement'); that is, there is such a set $A$ with \[\lvert A\cap\{1,\ldots,N\}\rvert \sim \frac{N}{\log_2N}\] as $N\to \infty$.
The set of squares has order $4$ and restricted order $5$ (see [Pa33]) and the set of triangular numbers has order $3$ and restricted order $3$ (see [Sc54]).
Is it true that if $A\backslash F$ is a basis for all finite sets $F$ then $A$ must have a restricted order? What if they are all bases of the same order?