OPEN

For $r\geq 2$ let $h(r)$ be the maximal finite $k$ such that there exists a basis $A\subseteq \mathbb{N}$ of order $r$ (so every large integer is the sum of at most $r$ integers from $A$) and exact order $k$ (i.e. $k$ is minimal such that every large integer is the sum of exactly $k$ integers from $A$). Find the value of
\[\lim_r \frac{h(r)}{r^2}.\]

Erdős and Graham [ErGr80b] have shown that a basis $A$ has an exact order if and only if $a_2-a_1,a_3-a_2,a_4-a_3,\ldots$ are coprime. They also prove that
\[\frac{1}{4}\leq \lim_r \frac{h(r)}{r^2}\leq \frac{5}{4}.\]
It is known that $h(2)=4$, but even $h(3)$ is unknown (it is $\geq 7$).