OPEN

Is there a sequence $A=\{1\leq a_1<a_2<\cdots\}$ such that every integer is the sum of some finite number of consecutive elements of $A$? Can the number of representations of $n$ in this form tend to infinity with $n$?

Erdős and Moser [Mo63] considered the case when $A$ is the set of primes, and conjectured that the $\limsup$ of the number of such representations in this case is infinite. They could not even prove that the upper density of the set of integers representable in this form is positive.