Logo
All Random Solved Random Open
OPEN
Is every odd $n$ the sum of a squarefree number and a power of 2?
Odlyzko has checked this up to $10^7$. Hercher [He24b] has verified this is true for all odd integers up to $2^{50}\approx 1.12\times 10^{15}$.

Granville and Soundararajan [GrSo98] have proved that this is very related to the problem of finding primes $p$ for which $2^p\equiv 2\pmod{p^2}$ (for example this conjecture implies there are infinitely many such $p$).

Erdős often asked this under the weaker assumption that $n$ is not divisible by $4$. Erdős thought that proving this with two powers of 2 is perhaps easy, and could prove that it is true (with a single power of two) for almost all $n$.

See also [9], [10], and [16].

Additional thanks to: Milos