 4 solved out of 30 shown
$10000 For any$C>0$are there infinitely many$n$such that $p_{n+1}-p_n> C\frac{\log\log n\log\log\log\log n}{(\log\log \log n)^2}\log n?$ The peculiar quantitative form of Erdős' question was motivated by an old result of Rankin [Ra38], which showed the existence of some constant$C>0$such that the claim holds. Solved by Maynard [Ma16] and Ford, Green, Konyagin, and Tao [FoGrKoTa16]. The best bound available, due to all five authors [FoGrKoMaTa18], is that there are infinitely many$n$such that $p_{n+1}-p_n\gg \frac{\log\log n\log\log\log\log n}{\log\log \log n}\log n.$ The likely truth is a lower bound like$\gg(\log n)^2$. In [Er97c] Erdős revised the value of this problem to \$5000 and reserved the \$10000 for a lower bound of$>(\log n)^{1+c}$for some$c>0$. Let$C\geq 0$. Is there an infinite sequence of$n_i$such that $\lim_{i\to \infty}\frac{p_{n_i+1}-p_{n_i}}{\log n_i}=C?$ Let$S$be the set of limit points of$(p_{n+1}-p_n)/\log n$. This problem asks whether$S=[0,\infty]$. Although this conjecture remains unproven, a lot is known about$S$. Some highlights: •$\infty\in S$by Westzynthius' result [We31] on large prime gaps, •$0\in S$by the work of Goldston, Pintz, and Yildirim [GPY09] on small prime gaps, • Erdős [Er55] and Ricci [Ri56] independently showed that$S$has positive Lebesgue measure, • Hildebrand and Maier [HiMa88] showed that$S$contains arbitrarily large (finite) numbers, • Pintz [Pi16] showed that there exists some small constant$c>0$such that$[0,c]\subset S$, • Banks, Freiberg, and Maynard [BFM16] showed that at least$12.5\%$of$[0,\infty)$belongs to$S$, • Merikoski [Me20] showed that at least$1/3$of$[0,\infty)$belongs to$S$, and that$S$has bounded gaps.$100
Let $d_n=p_{n+1}-p_n$. Are there infinitely many $n$ such that $d_n<d_{n+1}<d_{n+2}$?
Conjectured by Erdős and Turán [ErTu48]. Shockingly Erdős offered \$25000 for a disproof of this, but as he comments, it 'is certainly true'. Indeed, the answer is yes, as proved by Banks, Freiberg, and Turnage-Butterbaugh [BFT15] with an application of the Maynard-Tao machinery concerning bounded gaps between primes [Ma15]. They in fact prove that, for any$m\geq 1$, there are infinitely many$n$such that $d_n<d_{n+1}<\cdots <d_{n+m}$ and infinitely many$n$such that $d_n> d_{n+1}>\cdots >d_{n+m}.$ Additional thanks to: Mehtaab Sawhney Let$A$be the set of all integers not of the form$p+2^{k}+2^l$(where$k,l\geq 0$and$p$is prime). Is the upper density of$A$positive? Crocker [Cr71] has proved there are are$\gg\log\log N$such integers in$\{1,\ldots,N\}$. Erdős believes this cannot be proved by covering systems, i.e. integers of the form$p+2^k+2^l$exist in every infinite arithmetic progression. Is there some$k$such that every integer is the sum of a prime and at most$k$powers of 2? Erdős described this as 'probably unattackable'. In [ErGr80] Erdős and Graham suggest that no such$k$exists. Gallagher [Ga75] has shown that for any$\epsilon>0$there exists$k(\epsilon)$such that the set of integers which are the sum of a prime and at most$k(\epsilon)$many powers of 2 has lower density at least$1-\epsilon$. Is it true that $\sum_{n=1}^\infty(-1)^n\frac{n}{p_n}$ converges, where$p_n$is the sequence of primes? Erdős suggested that a computer could be used to explore this, and did not see any other method to attack this. Tao [Ta23] has proved that this series does converge assuming a strong form of the Hardy-Littlewood prime tuples conjecture. Is the set of odd integers not of the form$2^k+p$the union of an infinite arithmetic progression and a set of density$0$? Erdős called this conjecture 'rather silly'. Using covering congruences Erdős [Er50] proved that the set of such odd integers contains an infinite arithmetic progression. Are there infinitely many primes$p$such that every even number$n\leq p-3$can be written as a difference of primes$n=q_1-q_2$where$q_1,q_2\leq p$? The first prime without this property is$97$. Let$A=\{a_1<\cdots<a_t\}\subseteq \{1,\ldots,N\}$be such that$\phi(a_1)<\cdots<\phi(a_t)$. The primes are such an example. Are they the largest possible? Can one show that$\lvert A\rvert<(1+o(1))\pi(N)$or even$\lvert A\rvert=o(N)$? Erdős remarks that the last conjecture is probably easy, and that similar questions can be asked about$\sigma(n)$. Solved by Tao [Ta23b], who proved that $\lvert A\rvert \leq \left(1+O\left(\frac{(\log\log x)^5}{\log x}\right)\right)\pi(x).$ Let$k\geq 3$. Are there$k$consecutive primes in arithmetic progression? Green and Tao [GrTa08] have proved that there must always exist some$k$primes in arithmetic progression, but these need not be consecutive. Erdős called this conjecture 'completely hopeless at present'. Does the longest arithmetic progression of primes in$\{1,\ldots,N\}$have length$o(\log N)$? It follows from the prime number theorem that such a progression has length$\leq(1+o(1))\log N$. Is there an integer$m$with$(m,6)=1$such that none of$2^k3^\ell m+1$are prime, for any$k,\ell\geq 0$? There are odd integers$m$such that none of$2^km+1$are prime, which arise from covering systems (i.e. one shows that there exists some$n$such that$(2^km+1,n)>1$for all$k\geq 1$). Erdős and Graham also ask whether there is such an$m$where a covering system is not 'responsible'. The answer is probably no since otherwise this would imply there are infinitely many Fermat primes of the form$2^{2^t}+1$. Let$d_n=p_{n+1}-p_n$. The set of$n$such that$d_{n+1}\geq d_n$has density$1/2$, and similarly for$d_{n+1}\leq d_n$. Furthermore, there are infinitely many$n$such that$d_{n+1}=d_n$. Are there arbitrarily long arithmetic progressions of primes? The answer is yes, proved by Green and Tao [GrTa08]. The stronger claim that there are arbitrarily long arithmetic progressions of consecutive primes is still open. Let$d_n=p_{n+1}-p_n$. Prove that $\sum_{1\leq n\leq N}d_n^2 \ll N(\log N)^2.$ Cramer proved an upper bound of$O(N(\log N)^4)$conditional on the Riemann hypothesis. The prime number theorem immediately implies a lower bound of$\gg N(\log N)^2$. For every$c\geq 0$the density$f(c)$of integers for which $\frac{p_{n+1}-p_n}{\log n}< c$ exists and is a continuous function of$c$. Let$f(n)$count the number of solutions to$n=p+2^k$for prime$p$and$k\geq 0$. Is it true that$f(n)=o(\log n)$? Erdős [Er50] proved that there are infinitely many$n$such that$f(n)\gg \log\log n$. Erdős could not even prove that there do not exist infinitely many integers$n$such that for all$2^k<n$the number$n-2^k$is prime (probably$n=105$is the largest such integer). Let$c_1,c_2>0$. Is it true that, for any sufficiently large$x$, there exist more than$c_1\log x$many consecutive primes$\leq x$such that the difference between any two is$>c_2$? This is well-known if$c_1$is sufficiently small. Is there an infinite set of primes$P$such that if$\{a_1<a_2<\cdots\}$is the set of integers divisible only by primes in$P$then$\lim a_{i+1}-a_i=\infty$? Originally asked to Erdős by Wintner. The limit is infinite for a finite set of primes, which follows from a theorem of Pólya. Additional thanks to: Boris Alexeev and Dustin Mixon Let$C>1$. Does the set of integers of the form$p+\lfloor C^k\rfloor$, for some prime$p$and$k\geq 0$, have density$>0$? Originally asked to Erdős by Kalmár. Erdős believed the answer is yes. Romanoff [Ro34] proved that the answer is yes if$C$is an integer. Let$k\geq 3$. Is there a choice of congruence classes$a_p\pmod{p}$for every prime$p$such that all except finitely many integers can be written as$a_p+tp$for some prime$p$and integer$t\geq k$? Even the case$k=3$seems difficult. This may be true with the primes replaced by any set$A\subseteq \mathbb{N}$such that $\lvert A\cap [1,N]\rvert \gg N/\log N$ and $\sum_{\substack{n\in A\\ n\leq N}}\frac{1}{n} -\log\log N\to \infty$ as$N\to \infty$. For$k=1$or$k=2$any set$A$such that$\sum_{n\in A}\frac{1}{n}=\infty$has this property. Is there a sequence$A=\{1\leq a_1<a_2<\cdots\}$such that every integer is the sum of some finite number of consecutive elements of$A$? Can the number of representations of$n$in this form tend to infinity with$n$? Erdős and Moser [Mo63] considered the case when$A$is the set of primes, and conjectured that the$\limsup$of the number of such representations in this case is infinite. They could not even prove that the upper density of the set of integers representable in this form is positive. Is there a set$A\subseteq \mathbb{N}$such that, for infinitely many$n$, all of$n-a$are prime for all$a\in A$with$0<a<n$and $\liminf\frac{\lvert A\cap [1,x]\rvert}{\pi(x)}>0?$ Erdős and Graham could show this is true (assuming the prime$k$-tuple conjecture) if we replace$\liminf$by$\limsup$. Are there two infinite sets$A$and$B$such that$A+B$agrees with the set of prime numbers up to finitely many exceptions? A problem of Ostmann, sometimes known as the 'inverse Goldbach problem'. The answer is surely no. The best result in this direction is due to Elsholtz and Harper [ElHa15], who showed that if$A,B$are such sets then for all large$x$we must have $\frac{x^{1/2}}{\log x\log\log x} \ll \lvert A \cap [1,x]\rvert \ll x^{1/2}\log\log x$ and similarly for$B$. Elsholtz [El01] has proved there are no infinite sets$A,B,C$such that$A+B+C$agrees with the set of prime numbers up to finitely many exceptions. See also . Let $f(n) = \min_{i<n} (p_{n+i}+p_{n-i}),$ where$p_k$is the$k$th prime. Is it true that $\limsup_n (f(n)-2p_n)=\infty?$ Pomerance [Po79] has proved the$\limsup$is at least$2$. Let$A_n$be the least common multiply of$\{1,\ldots,n\}$. Is it true that, for all$k\geq 1$, $A_{p_{k+1}-1}< p_kA_{p_k}?$ Erdős and Graham write this is 'almost certainly' true, but the proof is beyond our ability, for two reasons (at least): • Firstly, one has to rule out the possibility of many primes$q$such that$p_k<q^2<p_{k+1}$. There should be at most one such$q$, which would follow from$p_{k+1}-p_k<p_k^{1/2}$, which is essentially the notorious Legendre's conjecture. • The small primes also cause trouble. Let$f(u)$be the largest$v$such that no$m\in (u,v)$is composed entirely of primes dividing$uv$. Estimate$f(u)$. Let$s_t(n)$be the$t$-smooth component of$n$- that is, the product of all primes$p$(with multiplicity) dividing$n$such that$p<t$. Let$f(n,t)$count the number of distinct possible values for$s_t(m)$for$m\in [n+1,n+t]$. Is there an$\epsilon>0$such that $f(n,t)>\epsilon t$ for all$t$and$n$? Erdős and Graham report they can show $f(n,t) \gg \frac{t}{\log t}.$ Let$p(n)$denote the least prime factor of$n$. There is a constant$c>0$such that $\sum_{\substack{n<x\\ n\textrm{ not prime}}}\frac{p(n)}{n}\sim c\frac{x^{1/2}}{(\log x)^2}.$ Is it true that $\sum_{x\leq n\leq x+cx^{1/2}(\log x)^2}\frac{p(n)}{n} \gg 1$ for all large$x$? Is there a function$f$with$f(n)\to \infty$as$n\to \infty$such that, for all large$n$, there is a composite number$m$such that $n+f(n)<m<n+p(m)?$ (Here$p(m)$is the least prime factor of$m\$.)