A shorter and simpler proof of an upper bound of the strength $4-c$ for some constant $c>0$ (and a generalisation to the case of more than two colours) was given by Balister, Bollobás, Campos, Griffiths, Hurley, Morris, Sahasrabudhe, and Tiba [BBCGHMST24].
This problem is #3 in Ramsey Theory in the graphs problem collection.
For fixed $n,t$ as we change $\alpha$ from $0$ to $1/2$ does $F^{(t)}(n,\alpha)$ increase continuously or are there jumps? Only one jump?
Erdős believed there might be just one jump, occcurring at $\alpha=0$.
Conlon, Fox, and Sudakov [CFS11] have proved that, for any fixed $\alpha>0$, \[F^{(3)}(n,\alpha) \ll_\alpha \sqrt{\log n}.\] Coupled with the lower bound above, this implies that there is only one jump for fixed $\alpha$ when $t=3$, at $\alpha=0$.
For all $\alpha>0$ it is known that \[F^{(t)}(n,\alpha)\gg_t (\log n)^{c_\alpha}.\] See also [563].
Prove that for every fixed $0\leq \alpha \leq 1/2$, as $n\to\infty$, \[F(n,\alpha)\sim c_\alpha \log n\] for some constant $c_\alpha$.
See also [544].
This problem is #5 in Ramsey Theory in the graphs problem collection.
Prove that, for every $0\leq \alpha\leq 1/2$, \[F(n,\alpha)\sim c_\alpha\log n\] for some constant $c_\alpha$ depending only on $\alpha$.
Note that when $\alpha=0$ this is just asking for a $2$-colouring of the edges of $K_n$ which contains no monochromatic clique of size $m$, and hence we recover the classical Ramsey numbers.
See also [161].