All Random Solved Random Open
OPEN - $500
Let $\alpha\in[0,1/2)$ and $n,t\geq 1$. Let $F^{(t)}(n,\alpha)$ be the largest $m$ such that we can $2$-colour the edges of the complete $t$-uniform hypergraph on $n$ vertices such that if $X\subseteq [n]$ with $\lvert X\rvert \geq m$ then there are at least $\alpha \binom{\lvert X\rvert}{t}$ many $t$-subsets of $X$ of each colour.

For fixed $n,t$ as we change $\alpha$ from $0$ to $1/2$ does $F^{(t)}(n,\alpha)$ increase continuously or are there jumps? Only one jump?

For $\alpha=0$ this is the usual Ramsey function. A conjecture of Erdős, Hajnal, and Rado (see [562]) implies that \[ F^{(t)}(n,0)\asymp \log_{t-1} n\] and results of Erdős and Spencer imply that \[F^{(t)}(n,\alpha) \asymp_\alpha (\log n)^{\frac{1}{t-1}}\] for $\alpha$ close to $1/2$.

Erdős believed there might be just one jump, occcurring at $\alpha=0$.

See also [563].

See also the entry in the graphs problem collection.