For fixed $n,t$ as we change $\alpha$ from $0$ to $1/2$ does $F^{(t)}(n,\alpha)$ increase continuously or are there jumps? Only one jump?

OPEN - $500

Let $\alpha\in[0,1/2)$ and $n,t\geq 1$. Let $F^{(t)}(n,\alpha)$ be the largest $m$ such that we can $2$-colour the edges of the complete $t$-uniform hypergraph on $n$ vertices such that if $X\subseteq [n]$ with $\lvert X\rvert \geq m$ then there are at least $\alpha \binom{\lvert X\rvert}{t}$ many $t$-subsets of $X$ of each colour.

For fixed $n,t$ as we change $\alpha$ from $0$ to $1/2$ does $F^{(t)}(n,\alpha)$ increase continuously or are there jumps? Only one jump?

For $\alpha=0$ this is the usual Ramsey function. A conjecture of Erdős, Hajnal, and Rado (see [562]) implies that
\[ F^{(t)}(n,0)\asymp \log_{t-1} n\]
and results of Erdős and Spencer imply that
\[F^{(t)}(n,\alpha) \gg_\alpha (\log n)^{\frac{1}{t-1}}\]
for all $\alpha>0$, and a similar upper bound holds for $\alpha$ close to $1/2$.

Erdős believed there might be just one jump, occcurring at $\alpha=0$.

Conlon, Fox, and Sudakov [CFS11] have proved that, for any fixed $\alpha>0$, \[F^{(3)}(n,\alpha) \ll_\alpha \sqrt{\log n}.\] Coupled with the lower bound above, this implies that there is only one jump for fixed $\alpha$ when $t=3$, at $\alpha=0$.

For all $\alpha>0$ it is known that \[F^{(t)}(n,\alpha)\gg_t (\log n)^{c_\alpha}.\] See also [563].