In [Er81] it is further conjectured that \[\max_{md\leq x}\left\lvert \sum_{1\leq k\leq m}f(kd)\right\rvert \gg \log x.\]
In [Er85c] Erdős also asks about the special case when $f$ is multiplicative.
For fixed $n,t$ as we change $\alpha$ from $0$ to $1/2$ does $F^{(t)}(n,\alpha)$ increase continuously or are there jumps? Only one jump?
Erdős believed there might be just one jump, occcurring at $\alpha=0$.
Conlon, Fox, and Sudakov [CFS11] have proved that, for any fixed $\alpha>0$, \[F^{(3)}(n,\alpha) \ll_\alpha \sqrt{\log n}.\] Coupled with the lower bound above, this implies that there is only one jump for fixed $\alpha$ when $t=3$, at $\alpha=0$.
For all $\alpha>0$ it is known that \[F^{(t)}(n,\alpha)\gg_t (\log n)^{c_\alpha}.\] See also [563].
Prove that for every fixed $0\leq \alpha \leq 1/2$, as $n\to\infty$, \[F(n,\alpha)\sim c_\alpha \log n\] for some constant $c_\alpha$.
Essentially the best possible result was proved by Tijdeman and Wagner [TiWa80], who proved that, for almost all intervals of the shape $[0,x)$, we have \[\limsup_{N\to \infty}\frac{\lvert D_N([0,x))\rvert}{\log N}\gg 1.\]