SOLVED
Let $z_1,\ldots,z_n\in\mathbb{C}$ with $1\leq \lvert z_i\rvert$ for $1\leq i\leq n$. Let $D$ be an arbitrary disc of radius $1$. Is it true that the number of sums of the shape
\[\sum_{i=1}^n\epsilon_iz_i \textrm{ for }\epsilon_i\in \{-1,1\}\]
which lie in $D$ is at most $\binom{n}{\lfloor n/2\rfloor}$?
A strong form of the
Littlewood-Offord problem. Erdős
[Er45] proved this is true if $z_i\in\mathbb{R}$, and for general $z_i\in\mathbb{C}$ proved a weaker upper bound of
\[\ll \frac{2^n}{\sqrt{n}}.\]
This was solved in the affirmative by Kleitman
[Kl65], who also later generalised this to arbitrary Hilbert spaces
[Kl70].
See also [395].