OPEN - $1000

Let $h(N)$ be the maximum size of a Sidon set in $\{1,\ldots,N\}$. Is it true that, for every $\epsilon>0$,
\[h(N) = N^{1/2}+O_\epsilon(N^\epsilon)?\]

A problem of Erdős and Turán. It may even be true that $h(N)=N^{1/2}+O(1)$, but Erdős remarks this is perhaps too optimistic. Erdős and Turán [ErTu41] proved an upper bound of $N^{1/2}+O(N^{1/4})$, with an alternative proof by Lindström [Li69]. Both proofs in fact give
\[h(N) \leq N^{1/2}+N^{1/4}+1.\]
Balogh, Füredi, and Roy [BFR21] improved the bound in the error term to $0.998N^{1/4}$, which has been further optimised by O'Bryant [OB22] to yield
\[h(N)\leq N^{1/2}+0.99703N^{1/4}\]
for sufficiently large $N$.

See also [241].

OPEN - $500

Is there an infinite Sidon set $A\subset \mathbb{N}$ such that
\[\lvert A\cap \{1\ldots,N\}\rvert \gg_\epsilon N^{1/2-\epsilon}\]
for all $\epsilon>0$?

The trivial greedy construction achieves $\gg N^{1/3}$. The current best bound of $\gg N^{\sqrt{2}-1+o(1)}$ is due to Ruzsa [Ru98]. (Erdős [Er73] had offered \$25 for any construction which achieves $N^{c}$ for some $c>1/3$.) Erdős proved that for every infinite Sidon set $A$ we have
\[\liminf \frac{\lvert A\cap \{1,\ldots,N\}\rvert}{N^{1/2}}=0,\]
and also that there is a set $A\subset \mathbb{N}$ with $\lvert A\cap \{1\ldots,N\}\rvert \gg_\epsilon N^{1/2-\epsilon}$ such that $1_A\ast 1_A(n)=O(1)$.

Erdős and Rényi have constructed, for any $\epsilon>0$, a set $A$ such that \[\lvert A\cap \{1\ldots,N\}\rvert \gg_\epsilon N^{1/2-\epsilon}\] for all large $N$ and $1_A\ast 1_A(n)\ll_\epsilon 1$ for all $n$.

OPEN - $500

Let $A\subset\mathbb{N}$ be an infinite set such that the triple sums $a+b+c$ are all distinct for $a,b,c\in A$ (aside from the trivial coincidences). Is it true that
\[\liminf \frac{\lvert A\cap \{1,\ldots,N\}\rvert}{N^{1/3}}=0?\]

Erdős proved that if the pairwise sums $a+b$ are all distinct aside from the trivial coincidences then
\[\liminf \frac{\lvert A\cap \{1,\ldots,N\}\rvert}{N^{1/2}}=0.\]

OPEN - $100

If $A,B\subset \{1,\ldots,N\}$ are two Sidon sets such that $(A-A)\cap(B-B)=\{0\}$ then is it true that
\[ \binom{\lvert A\rvert}{2}+\binom{\lvert B\rvert}{2}\leq\binom{f(N)}{2}+O(1),\]
where $f(N)$ is the maximum possible size of a Sidon set in $\{1,\ldots,N\}$? If $\lvert A\rvert=\lvert B\rvert$ then can this bound be improved to
\[\binom{\lvert A\rvert}{2}+\binom{\lvert B\rvert}{2}\leq (1-c)\binom{f(N)}{2}\]
for some constant $c>0$?

OPEN

For any $M\geq 1$, if $A\subset \mathbb{N}$ is a sufficiently large finite Sidon set then there are at least $M$ many $a\in A+A$ such that $a+1,a-1\not\in A+A$.

There may even be $\gg \lvert A\rvert^2$ many such $a$. A similar question can be asked for truncations of infinite Sidon sets.

OPEN

Let $A\subset \{1,\ldots,N\}$ be a Sidon set with $\lvert A\rvert\sim N^{1/2}$. Must $A+A$ be well-distributed over all small moduli? In particular, must about half the elements of $A+A$ be even and half odd?

OPEN

Does there exist a maximal Sidon set $A\subset \{1,\ldots,N\}$ of size $O(N^{1/3})$?

OPEN

Let $A\subset \mathbb{N}$ be an infinite set such that, for any $n$, there are most $2$ solutions to $a+b=n$ with $a\leq b$. Must
\[\liminf_{N\to\infty}\frac{\lvert A\cap \{1,\ldots,N\}\rvert}{N^{1/2}}=0?\]

If we replace $2$ by $1$ then $A$ is a Sidon set, for which Erdős proved this is true.

OPEN - $100

Let $f(N)$ be the maximum size of $A\subseteq \{1,\ldots,N\}$ such that the sums $a+b+c$ with $a,b,c\in A$ are all distinct (aside from the trivial coincidences). Is it true that
\[ f(N)\sim N^{1/3}?\]

Originally asked to Erdős by Bose. Bose and Chowla [BoCh62] provided a construction proving one half of this, namely
\[(1+o(1))N^{1/3}\leq f(N).\]
The best upper bound known to date is due to Green [Gr01],
\[f(N) \leq ((7/2)^{1/3}+o(1))N^{1/3}\]
(note that $(7/2)^{1/3}\approx 1.519\cdots$).

More generally, Bose and Chowla conjectured that the maximum size of $A\subseteq \{1,\ldots,N\}$ with all $r$-fold sums distinct (aside from the trivial coincidences) then \[\lvert A\rvert \sim N^{1/r}.\] This is known only for $r=2$ (see [30]).

OPEN

Let $A=\{1,2,4,8,13,21,31,45,66,81,97,\ldots\}$ be the greedy Sidon sequence: we begin with $1$ and iteratively include the next smallest integer that preserves the Sidon property. What is the order of growth of $A$? Is it true that
\[\lvert A\cap \{1,\ldots,N\}\rvert \gg N^{1/2-\epsilon}\]
for all $\epsilon>0$ and large $N$?

Erdős and Graham [ErGr80] also ask about the difference set $A-A$, whether this has positive density, and whether this contains $22$.

This sequence is at OEIS A005282.

OPEN

Let $F(n)$ be the maximum possible size of a subset $A\subseteq\{1,\ldots,N\}$ such that the products $ab$ are distinct for all $a<b$. Is there a constant $c$ such that
\[F(n)=\pi(n)+(c+o(1))n^{3/4}(\log n)^{-3/2}?\]

If $A\subseteq \{1,\ldots,n\}$ is such that all products $a_1\cdots a_r$ are distinct for $a_1<\cdots <a_r$ then is it true that \[\lvert A\rvert \leq \pi(n)+O(n^{\frac{r+1}{2r}})?\]

Erdős [Er68] proved that there exist some constants $0<c_1\leq c_2$ such that
\[\pi(n)+c_1 n^{3/4}(\log n)^{-3/2}\leq F(n)\leq \pi(n)+c_2 n^{3/4}(\log n)^{-3/2}.\]
Surprisingly, if we consider the corresponding problem in the reals (so consider the largest $A\subset [1,x]$ such that for any distinct $a,b,c,d\in A$ we have $\lvert ab-cd\rvert \geq 1$) then Alexander proved that $\lvert A\rvert> x/8e$ is possible (disproving an earlier conjecture of Erdős [Er73] that $m=o(x)$). Alexander's construction seems to be unpublished, and I have no idea what it is.

OPEN

Let $\ell(N)$ be maximal such that in any finite set $A\subset \mathbb{R}$ of size $N$ there exists a Sidon subset $S$ of size $\ell(N)$ (i.e. the only solutions to $a+b=c+d$ in $S$ are the trivial ones). Determine the order of $\ell(N)$.

In particular, is it true that $\ell(N)\sim N^{1/2}$?

Originally asked by Riddell [Ri69]. Erdős noted the bounds
\[N^{1/3} \ll \ell(N) \leq (1+o(1))N^{1/2}\]
(the upper bound following from the case $A=\{1,\ldots,N\}$). The lower bound was improved to $N^{1/2}\ll \ell(N)$ by Komlós, Sulyok, and Szemerédi [KSS75]. The correct constant is unknown, but it is likely that the upper bound is true, so that $\ell(N)\sim N^{1/2}$.

In [AlEr85] Alon and Erdős make the stronger conjecture that perhaps $A$ can always be written as the union of at most $(1+o(1))N^{1/2}$ many Sidon sets. (This is easily verified for $A=\{1,\ldots,N\}$ using standard constructions of Sidon sets.)

OPEN - $500

Let $A\subset \mathbb{N}$ be a finite Sidon set. Is there some set $B$ with $A\subseteq B$ which is perfect difference set modulo $p^2+p+1$ for some prime $p$?

OPEN

Let $A\subset \mathbb{R}_{>0}$ be a set of size $n$ such that every subset $B\subseteq A$ with $\lvert B\rvert =4$ has $\lvert B-B\rvert\geq 11$. Find the best constant $c>0$ such that $A$ must always contain a Sidon set of size $\geq cn$.

For comparison, note that if $B$ were a Sidon set then $\lvert B-B\rvert=13$, so this condition is saying that at most one difference is 'missing' from $B-B$. Equivalently, one can view $A$ as a set such that every four points determine at least five distinct distances, and ask for a subset with all distances distinct.

Erdős and Sós proved that $c\geq 1/2$. Gyárfás and Lehel [GyLe95] proved \[\frac{1}{2}<c<\frac{3}{5}.\] (The example proving the upper bound is the set of the first $n$ Fibonacci numbers.)

SOLVED

Let $k\geq 1$ and $H_k(n)$ be the maximal $r$ such that if $A\subset\mathbb{N}$ has $\lvert A\rvert=n$ and $\| 1_A\ast 1_A\|_\infty \leq k$ then $A$ contains a Sidon set of size at least $r$.

Is it true that $H_k(n)/n^{1/2}\to \infty$? Or even $H_k(n) > n^{1/2+c}$ for some constant $c>0$?

Erdős [Er84d] proved that
\[H_k(n) \ll n^{2/3}\]
(where the implied constant is absolute). The lower bound $H_k(n)\gg n^{1/2}$ follows from the fact that any set of size $n$ contains a Sidon set of size $\gg n^{1/2}$ (see [530]).

The answer is yes, and in fact \[H_k(n) \gg_k n^{2/3},\] proved by Alon and Erdős [AlEr85]. We sketch their proof as follows: take a random subset $A'\subset A$, including each $n\in A'$ with probability $\asymp n^{-1/3}$. The number of non-trivial additive quadruples in $A$ is $\ll n^2$ and hence only $\ll n^{2/3}$ non-trivial additive quadruples remain in $A'$. Since the size of the random subset is $\gg n^{2/3}$, all of the remaining non-trivial additive quadruples can be removed by removing at most $\lvert A'\rvert/2$ (choosing the constants suitably).

OPEN

What is the size of the largest Sidon subset $A\subseteq\{1,2^2,\ldots,N^2\}$? Is it $N^{1-o(1)}$?

A question of Alon and Erdős [AlEr85], who proved $\lvert A\rvert \geq N^{2/3-o(1)}$ is possible (via a random subset), and observed that
\[\lvert A\rvert \ll \frac{N}{(\log N)^{1/4}},\]
since (as shown by Landau) the density of the sums of two squares decays like $(\log N)^{-1/2}$.