Indeed, we must trivially have $\sum_{d|n_k}1/d \geq k$, or else there is a greedy colouring as a counterexample. Since $\prod_{p}(1+1/p^2)$ is finite we must have $\prod_{p|n_k}(1+1/p)\gg k$. To achieve the minimal $\prod_{p|n_k}p$ we take the product of primes up to $T$ where $\prod_{p\leq T}(1+1/p)\gg k$; by Mertens theorems this implies $T\geq C^{k}$ for some constant $C>1$, and hence $n_k\geq \prod_{p\mid n_k}p\geq \exp(cC^k)$ for some $c>0$.
Burr and Erdős [BuEr85] showed that there exists a constant $c>0$ such that it cannot be true that \[\lvert A\cap \{1,\ldots,N\}\rvert \leq c(\log N)^2\] for all large $N$ and that there exists a Ramsey $2$-complete $A$ such that for all large $N$ \[\lvert A\cap \{1,\ldots,N\}\rvert < (2\log_2N)^3.\] Improve either of these bounds.
Solved by Conlon, Fox, and Pham [CFP21], who constructed for every $r\geq 2$ an $r$-Ramsey complete $A$ such that for all large $N$ \[\lvert A\cap \{1,\ldots,N\}\rvert \ll r(\log N)^2,\] and showed that this is best possible, in that there exists some constant $c>0$ such that if $A\subset \mathbb{N}$ satisfies \[\lvert A\cap \{1,\ldots,N\}\rvert \leq cr(\log N)^2\] for all large $N$ then $A$ cannot be $r$-Ramsey complete.
The answer is yes, proved by Gruslys and Letzter [GrLe20].
In [Er97d] Erdős also asks for a lower bound for the count of edge-disjoint monochromatic triangles in single colour (the colour chosen to maximise this quantity), and speculates that the answer is $\geq cn^2$ for some constant $c>1/24$.
This problem is #3 in Ramsey Theory in the graphs problem collection.
This problem is #4 in Ramsey Theory in the graphs problem collection.
Are there infinitely many graphs $G$ which are not Ramsey size linear but such that all of its subgraphs are?
Estimate $f_c(n)$. In particular, is it true that $f_c(n)>n^{\epsilon}$ for some $\epsilon>0$? Or $f_c(n)\gg \log n$?
Edwards (unpublished) and Khadziivanov and Nikiforov [KhNi79] proved independently that $f_c(n) \geq n/6$ when $c>1/4$.
Fox and Loh [FoLo12] proved that \[f_c(n) \leq n^{O(1/\log\log n)}\] for all $c<1/4$, disproving the first conjecture of Erdős.
The best known lower bounds for $f_c(n)$ are those from Szemerédi's regularity lemma, and as such remain very poor.
See also [600] and the entry in the graphs problem collection.
Even stronger, is there some $c>0$ such that, for all large $k$, $R(G)>cR(k)$ for every graph $G$ with chromatic number $\chi(G)=k$?
Since $R(k)\leq 4^k$ this is trivial for $\epsilon\geq 3/4$. Yuval Wigderson points out that $R(G)\gg 2^{k/2}$ for any $G$ with chromatic number $k$ (via a random colouring), which asymptotically matches the best-known lower bounds for $R(k)$.
This problem is #12 and #13 in Ramsey Theory in the graphs problem collection.
The answer is no, as independently shown by Schipperus [Sc99] (published in [Sc10]) and Darby [Da99].
For example, Larson [La00] has shown that this is false when $\alpha=\omega^{\omega^2}$ and $n=5$. There is more background and proof sketches in Chapter 2.9 of [HST10], by Hajnal and Larson.
The obvious probabilistic construction (randomly colour the edges red/blue independently uniformly at random) yields a 2-colouring of the edges of $K_N$ such every set on $n$ vertices contains a red triangle and a blue triangle (using that every set of $n$ vertices contains $\gg n^2$ edge-disjoint triangles), provided $N \leq C^n$ for some absolute constant $C>1$. This implies $R(n;3,2) \geq C^{n}$, contradicting the conjecture.
Perhaps Erdős had a different problem in mind, but it is not clear what that might be. It would presumably be one where the natural probabilistic argument would deliver a bound like $C^{\sqrt{n}}$ as Erdős and Gyárfás claim to have achieved via the probabilistic method.
This problem is #17 in Ramsey Theory in the graphs problem collection.
For fixed $n,t$ as we change $\alpha$ from $0$ to $1/2$ does $F^{(t)}(n,\alpha)$ increase continuously or are there jumps? Only one jump?
Erdős believed there might be just one jump, occcurring at $\alpha=0$.
Conlon, Fox, and Sudakov [CFS11] have proved that, for any fixed $\alpha>0$, \[F^{(3)}(n,\alpha) \ll_\alpha \sqrt{\log n}.\] Coupled with the lower bound above, this implies that there is only one jump for fixed $\alpha$ when $t=3$, at $\alpha=0$.
For all $\alpha>0$ it is known that \[F^{(t)}(n,\alpha)\gg_t (\log n)^{c_\alpha}.\] See also [563].
Prove that for every fixed $0\leq \alpha \leq 1/2$, as $n\to\infty$, \[F(n,\alpha)\sim c_\alpha \log n\] for some constant $c_\alpha$.
This problem is #9 in Ramsey Theory in the graphs problem collection. See also [800].
See also [544].
This problem is #5 in Ramsey Theory in the graphs problem collection.
Moreira [Mo17] has proved that in any finite colouring of $\mathbb{N}$ there exist $x,y$ such that $\{x,x+y,xy\}$ are all the same colour.
Alweiss [Al23] has proved that, in any finite colouring of $\mathbb{Q}\backslash \{0\}$ there exist arbitrarily large finite $A$ such that all sums and products of distinct elements in $A$ are the same colour. Bowen and Sabok [BoSa22] had proved this earlier for the first non-trivial case of $\lvert A\rvert=2$.
Sets known to be Ramsey include vertices of $k$-dimensional rectangles [EGMRSS73], non-degenerate simplices [FrRo90], trapezoids [Kr92], and regular polygons/polyhedra [Kr91].
See also [483].
Erdős and Graham asked this with just any $k$-term arithmetic progression in blue (not necessarily with distance $1$), but Alon has pointed out that in fact no such $k$ exists: in any red/blue colouring of the integer points on a line either there are two red points distance $1$ apart, or else the set of blue points and the same set shifted by $1$ cover all integers, and hence by van der Waerden's theorem there are arbitrarily long blue arithmetic progressions.
It seems most likely, from context, that Erdős and Graham intended to restrict the blue arithmetic progression to have distance $1$ (although they do not write this restriction in their papers).
This is false; Kovač [Ko23] provides an explicit (and elegantly simple) colouring using 25 colours such that no colour class contains the vertices of a rectangle of area $1$. The question for parallelograms remains open.
In the same article Rödl also proved a lower bound for this problem, constructing, for all $n$, a $2$-colouring of $\binom{\{2,\ldots,n\}}{2}$ such that if $X\subseteq \{2,\ldots,n\}$ is such that $\binom{X}{2}$ is monochromatic then \[\sum_{x\in X}\frac{1}{\log x}\ll \log\log\log n.\]
This bound is best possible, as proved by Conlon, Fox, and Sudakov [CFS13], who proved that, if $n$ is sufficiently large, then in any $2$-colouring of $\binom{\{2,\ldots,n\}}{2}$ there exists some $X\subset \{2,\ldots,n\}$ such that $\binom{X}{2}$ is monochromatic and \[\sum_{x\in X}\frac{1}{\log x}\geq 2^{-8}\log\log\log n.\]
In other words, if $G$ is the infinite graph on $\mathbb{N}$ where we connect $m,n$ by an edge if and only if $n+m$ is a square, then is the chromatic number of $G$ equal to $\aleph_0$?
This is true, as proved by Khalfalah and Szemerédi [KhSz06], who in fact prove the general result with $x+y=z^2$ replaced by $x+y=f(z)$ for any non-constant $f(z)\in \mathbb{Z}[z]$ such that $2\mid f(z)$ for some $z\in \mathbb{Z}$.
See also [438].
Solved by Erdős, Sárközy, and Sós [ESS89], who in fact prove that there are at least \[\frac{N}{2}-O(N^{1-1/2^{k+1}})\] many even numbers which are of this form. They also prove that if $k=2$ then there are at least \[\frac{N}{2}-O(\log N)\] many even numbers which are of this form, and that $O(\log N)$ is best possible, since there is a $2$-colouring such that no power of $2$ is representable as a monochromatic sum.
A refinement of this problem appears as Problem 25 on the open problems list of Ben Green.
Solved in the affirmative by Pokrovskiy, Versteegen, and Williams [PVW24].
Erdős and Spencer [ErSp89] proved that \[F(k) \geq 2^{ck^2/\log k}\] for some constant $c>0$. Balogh, Eberhrad, Narayanan, Treglown, and Wagner [BENTW17] have improved this to \[F(k) \geq 2^{2^{k-1}/k}.\]
This problem is #10 in Ramsey Theory in the graphs problem collection.
This problem is #11 in Ramsey Theory in the graphs problem collection.
Implied by [548].
This problem is #14 in Ramsey Theory in the graphs problem collection.
This is false: Norin, Sun, and Zhao [NSZ16] have proved that if $T$ is the union of two stars on $k$ and $2k$ vertices, with an edge joining the centre of the two stars, then $R(T)\geq (4.2-o(1))k$. The best upper bound for the Ramsey number for this tree is $R(T)\leq 4.27492k+1$, obtained by Dubó and Stein [DuSt24].
This problem is #15 in Ramsey Theory in the graphs problem collection.
This problem is #16 in Ramsey Theory in the graphs problem collection.
This identity was proved for $k>n^2-2$ by Bondy and Erdős [BoEr73]. Nikiforov [Ni05] extended this to $k\geq 4n+2$.
Keevash, Long, and Skokan [KLS21] have proved this identity when $k\geq C\frac{\log n}{\log\log n}$ for some constant $C$, thus establishing the conjecture for sufficiently large $n$.
Luczak [Lu99] has shown that $R(C_n;3)\leq (4+o(1))n$ for all $n$, and in fact $R(C_n;3)\leq 3n+o(n)$ for even $n$.
Kohayakawa, Simonovits, and Skokan [KSS05] proved this conjecture when $n$ is sufficiently large and odd. Benevides and Skokan [BeSk09] proved that if $n$ is sufficiently large and even then $R(C_n;3)=2n$.
If $G$ has $n$ vertices and maximum degree $d$ then prove that \[\hat{R}(G)\ll_d n.\]
This was disproved for $d=3$ by Rödl and Szemerédi [RoSz00], who constructed a graph on $n$ vertices with maximum degree $3$ such that \[\hat{R}(G)\gg n(\log n)^{c}\] for some absolute constant $c>0$. Tikhomirov [Ti22b] has improved this to \[\hat{R}(G)\gg n\exp(c\sqrt{\log n}).\] It is an interesting question how large $\hat{R}(G)$ can be if $G$ has maximum degree $3$. Kohayakawa, Rödl, Schacht, and Szemerédi [KRSS11] proved an upper bound of $\leq n^{5/3+o(1)}$ and Conlon, Nenadov, and Trujić [CNT22] proved $\ll n^{8/5}$. The best known upper bound of $\leq n^{3/2+o(1)}$ is due to Draganić and Petrova [DrPe22].
Determine \[\hat{R}(K_{n,n}),\] where $K_{n,n}$ is the complete bipartite graph with $n$ vertices in each component.
Conlon, Fox, and Wigderson [CFW23] have proved that, for any $s\leq t$, \[\hat{R}(K_{s,t})\gg s^{2-\frac{s}{t}}t2^s,\] and prove that when $t\gg s\log s$ we have $\hat{R}(K_{s,t})\asymp s^2t2^s$. They conjecture that this should hold for all $s\leq t$, and so in particular we should have $\hat{R}(K_{n,n})\asymp n^32^n$.
Let $F_1$ and $F_2$ be the union of stars. More precisely, let $F_1=\cup_{i\leq s} K_{1,n_i}$ and $F_2=\cup_{j\leq t} K_{1,m_j}$. Prove that \[\hat{R}(F_1,F_2) = \sum_{2\leq k\leq s+2}\max\{n_i+m_j-1 : i+j=k\}.\]
Prove that, for $r\geq 3$, \[\log_{r-1} R_r(n) \asymp_r n,\] where $\log_{r-1}$ denotes the $(r-1)$-fold iterated logarithm. That is, does $R_r(n)$ grow like \[2^{2^{\cdots n}}\] where the tower of exponentials has height $r-1$?
Prove that, for every $0\leq \alpha\leq 1/2$, \[F(n,\alpha)\sim c_\alpha\log n\] for some constant $c_\alpha$ depending only on $\alpha$.
Note that when $\alpha=0$ this is just asking for a $2$-colouring of the edges of $K_n$ which contains no monochromatic clique of size $m$, and hence we recover the classical Ramsey numbers.
See also [161].
Is there some constant $c>0$ such that \[R_3(n) \geq 2^{2^{cn}}?\]
Is it true that \[R^*(G) \leq 2^{O(n)}\] for any graph $G$ on $n$ vertices?
Rödl [Ro73] proved this when $G$ is bipartite. Kohayakawa, Prömel, and Rödl [KPR98] have proved that \[R^*(G) < 2^{O(n(\log n)^2)}.\] An alternative (and more explicit) proof was given by Fox and Sudakov [FoSu08]. Conlon, Fox, and Sudakov [CFS12] have improved this to \[R^*(G) < 2^{O(n\log n)}.\]
The graph $H_5$ can also be described as $K_4^*$, obtained from $K_4$ by subdividing one edge. ($K_4$ itself is not Ramsey size linear, since $R(4,n)\gg n^{3-o(1)}$, see [166].) Bradać, Gishboliner, and Sudakov [BGS23] have shown that every subdivision of $K_4$ on at least $6$ vertices is Ramsey size linear, and also that $R(H_5,H) \ll m$ whenever $H$ is a bipartite graph with $m$ edges and no isolated vertices.
Frankl and Rödl [FrRo86] proved $N\leq 7\times 10^{11}$, which Spencer [Sp88] improved to $\leq 3\times 10^{9}$. This resolved the initial challenge of Erdős [Er75d] to beat $10^{10}$.
Lu [Lu07] proved $N\leq 9697$ vertices. The current record is due to Dudek and Rödl [DuRo08] who proved $N\leq 941$ vertices. For further information we refer to a paper of Radziszowski and Xu [RaXu07], who prove that $N\geq 19$ and speculate that $N\leq 127$.
This is true, and was proved by Chang [Ch72]. Milner modified his proof to prove that this remains true if we replace $K_3$ by $K_m$ for all finite $m<\omega$ (a shorter proof was found by Larson [La73]).
The first open case is $\beta=\omega^2$ (see [591]). Galvin and Larson [GaLa74] have shown that if $\beta\geq 3$ has this property then $\beta$ must be 'additively indecomposable', so that in particular $\beta=\omega^\gamma$ for some $\gamma<\omega_1$. Galvin and Larson conjecture that every $\beta\geq 3$ of this form has this property.
See also [590].
Whether this is true for $G_1=K_4$ and $G_2=K_3$ is the content of [595].
Day and Johnson [DaJo17] have shown that \[f(n)\geq 2^{c\sqrt{\log n}}\] for some constant $c>0$.
Resolved by Fox, Loh, and Zhao [FLZ15] who showed that the answer is no; in fact they prove that \[\mathrm{rt}(n; 4, ne^{-f(n)})\geq (1/8-o(1))n^2\] whenever $f(n) =o(\sqrt{\log n/\log\log n})$.
See also [22] and the entry in the graphs problem collection.
This was proved by Kwan and Sudakov [KwSu21].
This was proved by Bukh and Sudakov [BuSu07].
Jenssen, Keevash, Long, and Yepremyan [JKLY20] have proved that there must exist an induced subgraph which contains $\gg n^{2/3}$ distinct degrees (with no restriction on the number of vertices).
Is it true that for every infinite cardinal $\aleph$ there is a graph $G$ of which every finite subgraph is in $S$ and if the edges of $G$ are coloured with $\aleph$ many colours then there is a monochromatic triangle.
Ryan Alweiss has provided the following simple argument showing that the answer is yes: suppose we have some red/blue colouring without this property. Without loss of generality, suppose $1$ is coloured red, and then either $3$ or $5$ must be blue.
Suppose first that $3$ is blue. If $n\geq 6$ is red then (considering $1,n,2n-1$) we deduce $2n-1$ is blue, and then (considering $3,n+1,2n-1$) we deduce that $n+1$ is red. In particular the colouring must be eventually constant, and we are done.
Now suppose that $5$ is blue. Arguing similarly (considering $1,n,2n-1$ and $5,n+2,2n-1$) we deduce that if $n\geq 8$ is red then $n+2$ is also red, and we are similarly done, since the colouring must be eventually constant on some congruence class modulo $2$.
When $q=1$ this corresponds exactly to the classical Ramsey problem, and hence for example \[\frac{1}{p-1}\leq c(p,1) \leq \frac{2}{p+1}.\] It is easy to see that if $q=\binom{p-1}{2}+1$ then $c(p,q)=1$. Erdős, Faudree, Rousseau, and Schelp have shown that $c(p,\binom{p-1}{2})\leq 1/2$.
Is it true that, if $P_n$ is the path of length $n$, then \[\hat{R}(P_n)/n\to \infty\] and \[\hat{R}(P_n)/n^2 \to 0?\]
Answered by Beck [Be83b], who proved that in fact $\hat{R}(P_n)\ll n$.
Give reasonable bounds for $W(3,k)$. In particular, give any non-trivial lower bounds for $W(3,k)$ and prove that $W(3,k) < \exp(k^c)$ for some constant $c<1$.
Green [Gr22] established the superpolynomial lower bound \[W(3,k) \geq \exp\left( c\frac{(\log k)^{4/3}}{(\log\log k) ^{1/3}}\right)\] for some constant $c>0$ (in particular disproving a conjecture of Graham that $W(3,k)\ll k^2$). Hunter [Hu22] improved this to \[W(3,k) \geq \exp\left( c\frac{(\log k)^{2}}{\log\log k}\right).\] The first to show that $W(3,k) < \exp(k^c)$ for some $c<1$ was Schoen [Sc21]. The best upper bound currently known is \[W(3,k) \ll \exp\left( O((\log k)^9)\right),\] which follows from the best bounds known for sets without three-term arithmetic progressions (see [BlSi23] which improves slightly on the bounds due to Kelley and Meka [KeMe23]).
Is it true that \[F_k(n)\sim n^2/8?\]
See also [810].
See also [809].
If $d_G(n)$ exists then determine the best possible value of $d_G(n)$.
The Kürschák competition in Hungary in 1986 asked students to prove that $d_{K_3}(n)$ exists. Kostochka proved that $d_{K_3}(n)=n/4$ is the best possible. Tuza proved that \[d_{C_4}(n) \leq \left(\frac{1}{4}-c\right)n\] for some constant $c>0$. Brightwell and Trotter proved that \[d_{C_6}(n) > (1-o(1))\frac{n}{6}.\]