Wintner [Wi44] proved that, almost surely, \[\sum_{m\leq N}f(m)\ll N^{1/2+o(1)},\] and Erdős improved the right-hand side to $N^{1/2}(\log N)^{O(1)}$. Lau, Tenenbaum, and Wu [LTW13] have shown that, almost surely, \[\sum_{m\leq N}f(m)\ll N^{1/2}(\log\log N)^{2+o(1)}.\] Caich [Ca24b] has improved this to \[\sum_{m\leq N}f(m)\ll N^{1/2}(\log\log N)^{3/4+o(1)}.\] Harper [Ha13] has shown that the sum is almost surely not $O(N^{1/2}/(\log\log N)^{5/2+o(1)})$, and conjectured that in fact Erdős' conjecture is false, and almost surely \[\sum_{m\leq N}f(m) \ll N^{1/2}(\log\log N)^{1/4+o(1)}.\]
Is it true that the number of roots of $f(z)$ in $\{ z\in \mathbb{C} : \lvert z\rvert \leq 1\}$ is, almost surely, \[\left(\frac{1}{2}+o(1)\right)n?\]
Solved by Yakir [Ya21], who proved that almost all such polynomials have \[\frac{n}{2}+O(n^{9/10})\] many roots in $\{ z\in \mathbb{C} : \lvert z\rvert \leq 1\}$.
See also [521].
Does there exist some constant $C>0$ such that, almost surely, \[\max_{\lvert z\rvert=1}\left\lvert \sum_{k\leq n}\epsilon_k(t)z^k\right\rvert=(C+o(1))\sqrt{n\log n}?\]
This was settled by Halász [Ha73], who proved this is true with $C=1$.
The answer to both questions is yes: Littlewood's conjecture was solved by Kashin [Ka87], and Konyagin [Ko94] improved this to show that $m(f)\leq n^{-1/2+o(1)}$ almost surely. This is essentially best possible, since Konyagin and Schlag [KoSc99] proved that for any $\epsilon>0$ \[\limsup_{n\to \infty} \mathbb{P}(m(f) \leq \epsilon n^{-1/2})\ll \epsilon.\] Cook and Nguyen [CoNg21] have identified the limiting distribution, proving that for any $\epsilon>0$ \[\lim_{n\to \infty} \mathbb{P}(m(f) > \epsilon n^{-1/2}) = e^{-\epsilon \lambda}\] where $\lambda$ is an explicit constant.
Kahane [Ka59] showed that $a_n=\frac{1+c}{n}$ with $c>0$ has this property, which Erdős (unpublished) improved to $a_n=\frac{1}{n}$. Erdős also showed that $a_n=\frac{1-c}{n}$ with $c>0$ does not have this property.
Solved by Shepp [Sh72], who showed that a necessary and sufficient condition is that \[\sum_n \frac{e^{a_1+\cdots+a_n}}{n^2}=\infty.\]
It is 'well known' that, for almost all $\epsilon_n=\pm 1$, the series diverges for almost all $\lvert z\rvert=1$ (assuming only $\sum \lvert a_n\rvert^2=\infty$).
Dvoretzky and Erdős [DE59] showed that if $\lvert a_n\rvert >c/\sqrt{n}$ then, for almost all $\epsilon_n=\pm 1$, the series diverges for all $\lvert z\rvert=1$.
For $k=2$ Duminil-Copin and Hammond [DuHa13] have proved that $d_2(n)=o(n)$.
It is now conjectured that $d_k(n)\ll n^{1/2}$ is false for $k=3$ and $k=4$, and more precisely (see for example Section 1.4 of [MaSl93]) that $d_2(n)\sim Dn^{3/4}$, $d_3(n)\sim n^{\nu}$ where $\nu\approx 0.59$, and $d_4(n)\sim D(\log n)^{1/8}n^{1/2}$.
Madras and Slade [MaSl93] have a monograph on the topic of self-avoiding walks.
See also [528].