In [ErGr80] the generalisation where $A\subseteq (0,N]$ is a set of real numbers such that the subset sums all differ by at least $1$ is proposed, with the same conjectured bound.
Even the case $k=3$ is non-trivial, but was proved by Bloom and Sisask [BlSi20]. Much better bounds for $r_3(N)$ were subsequently proved by Kelley and Meka [KeMe23]. Green and Tao [GrTa17] have proved $r_4(N)\ll N/(\log N)^{c}$ for some small constant $c>0$. The best bound available for general $k$ is due to Gowers [Go01], \[r_k(N) \ll \frac{N}{(\log\log N)^{c_k}},\] where $c_k>0$ is a small constant depending on $k$.
Curiously, Erdős [Er83c] thought this conjecture was the 'only way to approach' the conjecture that there are arbitrarily long arithmetic progressions of prime numbers, now a theorem due to Green and Tao [GrTa08].
See also [142].
Indeed, the answer is yes, as proved by Banks, Freiberg, and Turnage-Butterbaugh [BFT15] with an application of the Maynard-Tao machinery concerning bounded gaps between primes [Ma15]. They in fact prove that, for any $m\geq 1$, there are infinitely many $n$ such that \[d_n<d_{n+1}<\cdots <d_{n+m}\] and infinitely many $n$ such that \[d_n> d_{n+1}>\cdots >d_{n+m}.\]
Selfridge has shown (as reported in [Sc67]) that such a covering system exists if a covering system exists with moduli $n_1,\ldots,n_k$ such that no $n_i$ divides any other $n_j$.
Balister, Bollobás, Morris, Sahasrabudhe, and Tiba [BBMST21] have proved that if the moduli are all squarefree then at least one must be even.
Erdős thinks that proving this with two powers of 2 is perhaps easy.
Tao [Ta23] has proved that this series does converge assuming a strong form of the Hardy-Littlewood prime tuples conjecture.
Can a lacunary set $A\subset\mathbb{N}$ (i.e. there exists some $\lambda>1$ such that $A=\{n_1<n_2<\cdots\}$ satisfies $n_{k+1}>\lambda n_k$) be an essential component?
Solved by Tao [Ta23b], who proved that \[ \lvert A\rvert \leq \left(1+O\left(\frac{(\log\log x)^5}{\log x}\right)\right)\pi(x).\]
Solved by Conlon, Fox, and Pham [CFP21], who constructed for every $r\geq 2$ an $r$-Ramsey complete $A$ such that for all large $N$ \[\lvert A\cap \{1,\ldots,N\}\rvert \ll r(\log N)^2,\] and showed that this is best possible, in that there exists some constant $c>0$ such that if $A\subset \mathbb{N}$ satisfies \[\lvert A\cap \{1,\ldots,N\}\rvert \leq cr(\log N)^2\] for all large $N$ then $A$ cannot be $r$-Ramsey complete.
More generally, if $f(n)$ is the largest integer such that, for some prime $p$, we have $p^{f(n)}$ dividing $\binom{2n}{n}$, then $f(n)$ should tend to infinity with $n$. Can one even disprove that $f(n)\gg \log n$?
See also [489].
Schinzel conjectured the generalisation that, for any fixed $a$, if $n$ is sufficiently large in terms of $a$ then there exist distinct integers $1\leq x<y<z$ such that \[\frac{a}{n} = \frac{1}{x}+\frac{1}{y}+\frac{1}{z}.\]
For $k=1$ or $k=2$ any set $A$ such that $\sum_{n\in A}\frac{1}{n}=\infty$ has this property.
Is it true that for every $\epsilon>0$ there exists some $k$ such that the density of integers not satisfying any of the congruences $a_i\pmod{n_i}$ for $1\leq i\leq k$ is less than $\epsilon$?
Does this process always terminate if $x$ has odd denominator and $A$ is the set of odd numbers? More generally, for which pairs $x$ and $A$ does this process terminate?
Graham [Gr64b] has shown that $\frac{m}{n}$ is the sum of distinct unit fractions with denominators $\equiv a\pmod{d}$ if and only if \[\left(\frac{n}{(n,(a,d))},\frac{d}{(a,d)}\right)=1.\] Does the greedy algorithm always terminate in such cases?
Graham [Gr64c] has also shown that $x$ is the sum of distinct unit fractions with square denominators if and only if $x\in [0,\pi^2/6-1)\cup [1,\pi^2/6)$. Does the greedy algorithm for this always terminate? Erdős and Graham believe not - indeed, perhaps it fails to terminate almost always.
This conjecture would follow for all but at most finitely many exceptions if it were known that, for all large $N$, there exists a prime $p\in [N,2N]$ such that $\frac{p+1}{2}$ is also prime.
An elementary inductive argument shows that $n_k\leq ku_k$ where $u_1=1$ and $u_{i+1}=u_i(u_i+1)$, and hence \[v(k) \leq kc_0^{2^k},\] where \[c_0=\lim_n u_n^{1/2^n}=1.26408\cdots\] is the 'Vardi constant'.
Hunter and Sawhney have observed that Theorem 3 of Bloom [Bl23] (coupled with the trivial greedy approach) implies that $k(N)=(1-o(1))\log N$.
The possible alternative question, that if $A\subseteq \mathbb{N}$ is a set of positive lower density then must there exist $a,b,c\in A$ such that \[\frac{1}{a}=\frac{1}{b}+\frac{1}{c},\] has a negative answer, taking for example $A$ to be the union of $[5^k,(1+\epsilon)5^k]$ for large $k$ and sufficiently small $\epsilon>0$. This was observed by Hunter and Sawhney.
Related to [18].
This is not true in general, as shown by Sándor [Sa97], who observed that the proper divisors of $120$ form a counterexample. More generally, Sándor shows that for any $n\geq 2$ there exists a finite set $A\subseteq \mathbb{N}\backslash\{1\}$ with $\sum_{k\in A}\frac{1}{k}<n$ and no partition into $n$ parts each of which has $\sum_{k\in A_i}\frac{1}{k}<1$.
The minimal counterexample is $\{2,3,4,5,6,7,10,11,13,14,15\}$, found by Tom Stobart.
See also [321].
See also [320].
Independently Erdős [Er36] and Chowla proved that for all $k\geq 3$ and infinitely many $n$ \[1_A^{(k)}(n) \gg n^{c/\log\log n}\] for some constant $c>0$ (depending on $k$).
For $k>2$ it is not known if $f_{k,k}(x)=o(x)$.
What if $a,b\in A$ with $a\neq b$ implies $a+b\nmid 2ab$? Must $\lvert A\rvert=o(N)$?
One can also ask what conditions are sufficient for $D(A)$ to have positive density, or for $\sum_{d\in D(A)}\frac{1}{d}=\infty$, or even just $D(A)\neq\emptyset$.
It is likely that $f(n)\leq n^{o(1)}$, or even $f(n)\leq e^{O(\sqrt{\log n})}$.
The set of squares has order $4$ and restricted order $5$ (see [Pa33]) and the set of triangular numbers has order $3$ and restricted order $3$ (see [Sc54]).
Is it true that if $A\backslash F$ is a basis for all finite sets $F$ then $A$ must have a restricted order? What if they are all bases of the same order?
This sequence is at OEIS A005282.
The original question was answered by Szemerédi and Vu [SzVu06] (who proved that the answer is yes).
This is best possible, since Folkman [Fo66] showed that for all $\epsilon>0$ there exists a multiset $A$ with \[\lvert A\cap \{1,\ldots,N\}\rvert\ll N^{1+\epsilon}\] for all $N$, such that $A$ is not subcomplete.
This is true, and was proved by Szemerédi and Vu [SzVu06]. The stronger conjecture that this is true under \[\lvert A\cap \{1,\ldots,N\}\rvert\geq (2N)^{1/2}\] seems to be still open (this would be best possible as shown by [Er61b].
Is it true that there are infinitely many $k$ such that $T(n^k)>T(n^{k+1})$?
The original problem was solved (in the affirmative) by Beker [Be23b].
They also ask how many consecutive integers $>n$ can be represented as such a sum? Is it true that, for any $c>0$ at least $cn$ such integers are possible (for sufficiently large $n$)?
Note that $8$ is 3-full and $9$ is 2-full. Is the the only pair of such consecutive integers?
See also [382].
See also [380].
Overholt [Ov93] has shown that this has only finitely many solutions assuming a weak form of the abc conjecture.
See also [401].
Proved for all sufficiently large sets (including the sharper version which characterises the case of equality) independently by Szegedy [Sz86] and Zaharescu [Za87].
Proved for all sets by Balasubramanian and Soundararajan [BaSo96].
See also [404].
Is there a prime $p$ and an infinite sequence $a_1<a_2<\cdots$ such that if $p^{m_k}$ is the highest power of $p$ dividing $\sum_{i\leq k}a_i!$ then $m_k\to \infty$?
Erdős, Granville, Pomerance, and Spiro [EGPS90] have proved that the answer to the first two questions is yes, conditional on a form of the Elliott-Halberstam conjecture.
It is likely true that, if $k\to \infty$ however slowly with $n$, then for almost $n$ the largest prime factor of $n$ is $\leq n^{o(1)}$.
Erdős and Graham report it could be attacked by sieve methods, but 'at present these methods are not strong enough'. Can one show that there exists an $\epsilon>0$ such that there are infinitely many $n$ where $m+\epsilon \nu(m)\leq n$ for all $m<n$?
See also [417].
Erdős [Er73b] has shown that a positive density set of integers cannot be written as $\sigma(n)-n$.
See also [490].
Elsholtz [El01] has proved there are no infinite sets $A,B,C$ such that $A+B+C$ agrees with the set of prime numbers up to finitely many exceptions.
See also [432].
Lagarias, Odlyzko, and Shearer [LOS83] proved this is sharp for the modular version of the problem; that is, if $A\subseteq \mathbb{Z}/N\mathbb{Z}$ is such that $A+A$ contains no squares then $\lvert A\rvert\leq \tfrac{11}{32}N$. They also prove the general upper bound of $\lvert A\rvert\leq 0.475N$ for the integer problem.
In fact $\frac{11}{32}$ is sharp in general, as shown by Khalfalah, Lodha, and Szemerédi [KLS02], who proved that the maximal such $A$ satisfies $\lvert A\rvert\leq (\tfrac{11}{32}+o(1))N$.
If $\delta'(n)$ is the density of integers which have exactly one divisor in $(n,2n)$ then is it true that $\delta'(n)=o(\delta(n))$?
This has been resolved by Ford [Fo08]. Among many other results, Ford proves \[\delta(n)\asymp \frac{1}{(\log n)^\alpha(\log\log n)^{3/2}},\] and that the second conjecture is false (i.e. $\delta'(n) \geq \delta(n)$ for some constant $c>0$)
Is it true that, for any $0<\delta<1/2$, we have \[N(X,\delta)=o(X)?\] In fact, is it true that (for any fixed $\delta>0$) \[N(X,\delta)<X^{1/2+o(1)}?\]
Is there some $\delta>0$ such that \[\lim_{x\to \infty}N(X,\delta)=\infty?\]
What is the size of $D_n\backslash \cup_{m<n}D_m$?
If $f(N)$ is the minimal $n$ such that $N\in D_n$ then is it true that $f(N)=o(N)$? Perhaps just for almost all $N$?
Melfi [Me15] has proved that there are infinitely many primitive weird numbers, conditional on various well-known conjectures on the distribution of prime gaps. For example, it would suffice to show that $p_{n+1}-p_n <\frac{1}{10}p_n^{1/2}$ for sufficiently large $n$.
Watts has suggested that perhaps the obvious greedy algorithm defines such a permutation - that is, let $a_1=1$ and let \[a_{n+1}=\min \{ x : a_n+x\textrm{ is prime and }x\neq a_i\textrm{ for }i\leq n\}.\] In other words, do all positive integers occur as some such $a_n$? Do all primes occur as a sum?
As an indication of the difficulty, when $k=3$ the smallest $n$ such that $2^n\equiv 3\pmod{n}$ is $n=4700063497$.
Find similar results for $\theta=\sqrt{m}$, and other algebraic numbers.
See also [208].
See also [425].