Erdős, Granville, Pomerance, and Spiro [EGPS90] have proved that the answer to the first two questions is yes, conditional on a form of the Elliott-Halberstam conjecture.
It is likely true that, if $k\to \infty$ however slowly with $n$, then for almost $n$ the largest prime factor of $n$ is $\leq n^{o(1)}$.
Erdős and Graham report it could be attacked by sieve methods, but 'at present these methods are not strong enough'. Can one show that there exists an $\epsilon>0$ such that there are infinitely many $n$ where $m+\epsilon \nu(m)\leq n$ for all $m<n$?