1 solved out of 19 shown

Is
\[\sum_n \frac{\phi(n)}{2^n}\]
irrational? Here $\phi$ is the Euler totient function.

Let $k\geq 1$ and $\sigma_k(n)=\sum_{d\mid n}d^k$. Is
\[\sum \frac{\sigma_k(n)}{n!}\]
irrational?

Let $a_n$ be a sequence such that $a_n/n\to \infty$. Is the sum
\[\sum_n \frac{a_n}{2^{a_n}}\]
irrational?

This is true under either of the stronger assumptions that

- $a_{n+1}-a_n\to \infty$ or
- $a_n \gg n\sqrt{\log n\log\log n}$.

How fast can $a_n\to \infty$ grow if
\[\sum\frac{1}{a_n}\quad\textrm{and}\quad\sum\frac{1}{a_n+1}\]
are both rational?

Cantor observed that $a_n=\binom{n}{2}$ is such a sequence. If we replace $+1$ by a larger constant then higher degree polynomials can be used - for example if we consider $\sum\frac{1}{a_n}$ and $\sum\frac{1}{a_n+8}$ then $a_n=n^3+6n^2+5n$ is an example.

Let $P$ be a finite set of primes with $\lvert P\rvert \geq 2$ and let $\{a_1<a_2<\cdots\}=\{ n\in \mathbb{N} : \textrm{if }p\mid n\textrm{ then }p\in P\}$. Is the sum
\[\sum_{n=1}^\infty \frac{1}{[a_1,\ldots,a_n]},\]
where $[a_1,\ldots,a_n]$ is the lowest common multiple of $a_1,\ldots,a_n$, rational or irrational?

If $P$ is infinite this sum is always irrational.

Let $f(n)\to \infty$ as $n\to \infty$. Is it true that
\[\sum_n \frac{1}{(n+1)\cdots (n+f(n))}\]
is irrational?

Erdős and Graham write 'the answer is almost surely in the affirmative if $f(n)$ is assumed to be nondecreasing'. Even the case $f(n)=n$ is unknown, although Hansen [Ha75] has shown that
\[\sum_n \frac{1}{\binom{2n}{n}}=\sum_n \frac{n!}{(n+1)\cdots (n+n)}=\frac{1}{3}+\frac{2\pi}{3^{5/2}}\]
is transcendental.