A stronger form (see [604]) may be true: is there a single point which determines $\gg n/\sqrt{\log n}$ distinct distances, or even $\gg n$ many such points, or even that this is true averaged over all points.
See also [661].
This would be the best possible, as is shown by a set of lattice points. It is easy to show that there are $O(n^{3/2})$ many such pairs. The best known upper bound is $O(n^{4/3})$, due to Spencer, Szemerédi, and Trotter [SST84]. In [Er83c] and [Er85] Erdős offers \$250 for an upper bound of the form $n^{1+o(1)}$.
Part of the difficulty of this problem is explained by a result of Valtr (see [Sz16]), who constructed a metric on $\mathbb{R}^2$ and a set of $n$ points with $\gg n^{4/3}$ unit distance pairs (with respect to this metric). The methods of the upper bound proof of Spencer, Szemerédi, and Trotter [SST84] generalise to include this metric. Therefore to prove an upper bound better than $n^{4/3}$ some special feature of the Euclidean metric must be exploited.
See a survey by Szemerédi [Sz16] for further background and related results.
Is it true that $f(n)\leq n^{o(1)}$? Or even $f(n) < n^{c/\log\log n}$ for some constant $c>0$?
The set of lattice points imply $f(n) > n^{c/\log\log n}$ for some constant $c>0$. Erdős offered \$500 for a proof that $f(n) \leq n^{o(1)}$ but only \$100 for a counterexample.
It is trivial that $f(n) \ll n^{1/2}$. A result of Pach and Sharir implies $f(n) \ll n^{2/5}$.
Fishburn (personal communication to Erdős) proved that $6$ is the smallest $n$ such that $f(n)=3$ and $8$ is the smallest $n$ such that $f(n)=4$, and suggested that the lattice points may not be best example.
See also [754].
Szemerédi conjectured (see [Er97e]) that this stronger variant remains true if we only assume that no three points are on a line, and proved this with the weaker bound of $n/3$.
See also [660].
Edelsbrunner and Hajnal [EdHa91] have constructed $n$ such points with $2n-7$ pairs distance $1$ apart. (This disproved an early stronger conjecture of Erdős and Moser, that the true answer was $\frac{5}{3}n+O(1)$.)
If this fails for $4$, perhaps there is some constant for which it holds?
Erdős suggested this as an approach to solve [96]. Indeed, if this problem holds for $k+1$ vertices then, by induction, this implies an upper bound of $kn$ for [96].
The answer is no if we omit the requirement that the polygon is convex (I thank Boris Alexeev and Dustin Mixon for pointing this out), since for any $d$ there are graphs with minimum degree $d$ which can be embedded in the plane such that each edge has length one (for example one can take the $d$-dimensional hypercube graph on $2^d$ vertices). One can then connect the vertices in a cyclic order so that there are no self-intersections and no three consecutive vertices on a line, thus forming a (non-convex) polygon.
Erdős [Er94b] wrote 'I could not prove it but felt that it should not be hard. To my great surprise both B. H. Sendov and M. Simonovits doubted the truth of this conjecture.' In [Er94b] he offers \$100 for a counterexample but only \$50 for a proof.
The stated problem is false for $n=4$, for example taking the points to be vertices of a square. The behaviour of such sets for small $n$ is explored by Bezdek and Fodor [BeFo99].
See also [103].
Grünbaum [Gr76] constructed an example with $\gg n^{3/2}$ such lines. Erdős speculated this may be the correct order of magnitude. This is false: Solymosi and Stojaković [SoSt13] have constructed a set with no five on a line and at least \[n^{2-O(1/\sqrt{\log n})}\] many lines containing exactly four points.
See also [102]. A generalisation of this problem is asked in [588].
It is easy to see that $h_c(n) \ll_c n^{1/2}$, and Erdős originally suggested that perhaps a similar lower bound $h_c(n)\gg_c n^{1/2}$ holds. Zach Hunter has pointed out that this is false, even replacing $>3$ points on each line with $>k$ points: consider the set of points in $\{1,\ldots,m\}^d$ where $n\approx m^d$. These intersect any line in $\ll_d n^{1/d}$ points, and have $\gg_d n^2$ many pairs of points each of which determine a line with at least $k$ points. This is a construction in $\mathbb{R}^d$, but a random projection into $\mathbb{R}^2$ preserves the relevant properties.
This construction shows that $h_c(n) \ll n^{1/\log(1/c)}$.
See also [99].
In [Er75h] Erdős also asks how many such unit circles there must be if the points are in general position.
It is trivial from the Cauchy-Schwarz inequality that $f(k^2)=4k$. Erdős also asks for which $n$ is it true that $f(n+1)=f(n)$.
In [Er97e] Erdős clarifies that the \$500 is for a proof, and only offers \$100 for a disproof.
This problem is #1 in Ramsey Theory in the graphs problem collection.
Answered in the negative by Tao [Ta24c], who proved that for any large $n$ there exists a set of $n$ points in $\mathbb{R}^2$ such that any four points determine at least give distinct distances, yet there are $\ll n^2/\sqrt{\log n}$ distinct distances in total. Tao discusses his solution in a blog post.
Sets known to be Ramsey include vertices of $k$-dimensional rectangles [EGMRSS73], non-degenerate simplices [FrRo90], trapezoids [Kr92], and regular polygons/polyhedra [Kr91].
Erdős and Graham asked this with just any $k$-term arithmetic progression in blue (not necessarily with distance $1$), but Alon has pointed out that in fact no such $k$ exists: in any red/blue colouring of the integer points on a line either there are two red points distance $1$ apart, or else the set of blue points and the same set shifted by $1$ cover all integers, and hence by van der Waerden's theorem there are arbitrarily long blue arithmetic progressions.
It seems most likely, from context, that Erdős and Graham intended to restrict the blue arithmetic progression to have distance $1$ (although they do not write this restriction in their papers).
This is false; Kovač [Ko23] provides an explicit (and elegantly simple) colouring using 25 colours such that no colour class contains the vertices of a rectangle of area $1$. The question for parallelograms remains open.
The Sylvester-Gallai theorem implies that there must exist a point where only two lines from $A$ meet. This problem asks whether there must exist three such points which form a triangle (with sides induced by lines from $A$). Füredi and Palásti [FuPa84] showed this is false when $d\geq 4$ is not divisible by $9$. Escudero [Es16] showed this is false for all $d\geq 4$.
That $f(n)\to \infty$ was proved by Motzkin [Mo51]. Kelly and Moser [KeMo58] proved that $f(n)\geq\tfrac{3}{7}n$ for all $n$. This is best possible for $n=7$. Motzkin conjectured that for $n\geq 13$ there are at least $n/2$ such lines. Csima and Sawyer [CsSa93] proved a lower bound of $f(n)\geq \tfrac{6}{13}n$ when $n\geq 8$. Green and Tao [GrTa13] proved that $f(n)\geq n/2$ for sufficiently large $n$. (A proof that $f(n)\geq n/2$ for large $n$ was earlier claimed by Hansen but this proof was flawed.)
The bound of $n/2$ is best possible for even $n$, since one could take $n/2$ points on a circle and $n/2$ points at infinity. Surprisingly, Green and Tao [GrTa13] show that if $n$ is odd then $f(n)\geq 3\lfloor n/4\rfloor$.
In [Er84] Erdős speculates that perhaps there are $\geq (1+o(1))kn/6$ many such lines, but says 'perhaps [this] is too optimistic and one should first look for a counterexample'. The constant $1/6$ would be best possible here, since there are arrangements of $n$ points with no four points on a line and $\sim n^2/6$ many lines containing three points (see Burr, Grünbaum, and Sloane [BGS74] and Füredi and Palásti [FuPa84]).
Indeed, Shaffaf and Tao actually proved that such a rational distance set must be contained in a finite union of real algebraic curves. Solymosi and de Zeeuw [SdZ10] then proved (unconditionally) that a rational distance set contained in a real algebraic curve must be finite, unless the curve contains a line or a circle.
Ascher, Braune, and Turchet [ABT20] observed that, combined, these facts imply that a rational distance set in general position must be finite (conditional on the Bombieri-Lang conjecture).
Ascher, Braune, and Turchet [ABT20] have shown that there is a uniform upper bound on the size of such a set, conditional on the Bombieri-Lang conjecture. Greenfeld, Iliopoulou, and Peluse [GIP24] have shown (unconditionally) that any such set must be very sparse, in that if $S\subseteq [-N,N]^2$ has no three on a line and no four on a circle, and all pairwise distances integers, then \[\lvert S\rvert \ll (\log N)^{O(1)}.\]
See also [130].
In fact, such a set does exist, as proved by Jackson and Mauldin [JaMa02]. Their construction depends on the axiom of choice.
This problem is #2 in Ramsey Theory in the graphs problem collection.
Estimate \[m_1=\sup \overline{\delta}(A),\] where $A$ ranges over all measurable subsets of $\mathbb{R}^2$ without two points distance $1$ apart. In particular, is $m_1\leq 1/4$?
The trivial upper bound is $m_1\leq 1/2$, since for any unit vector $u$ the sets $A$ and $A+u$ must be disjoint. Erdős' question was solved by Ambrus, Csiszárik, Matolcsi, Varga, and Zsámboki [ACMVZ23] who proved that $m_1\leq 0.247$.
Bannai, Bannai, and Stanton [BBS83] have proved that \[\lvert A\rvert \leq \binom{n+2}{2}.\] A simple proof of this upper bound was given by Petrov and Pohoata [PePo21].
Shengtong Zhang has observed that a simple lower bound of $\binom{n}{2}$ is given by considering all points with exactly two coordinates equal to $1$ and all others equal to $0$.
Alweiss has observed a lower bound of $\binom{n+1}{2}$ follows from considering the subset of $\mathbb{R}^{n+1}$ formed of all vectors $e_i+e_j$ where $e_i,e_j$ are distinct coordinate vectors. This set can be viewed as a subset of some $\mathbb{R}^n$, and is easily checked to have the required property.
The fact that the truth for $n=3$ is $8$ suggests that neither of these bounds is the truth.
Sendov [Se93] provided the definitive answer, proving that $\alpha_N=\pi(1-1/n)$ for $2^{n-1}+2^{n-3}<N\leq 2^n$ and $\alpha_N=\pi(1-\frac{1}{2n-1})$ for $2^{n-1}<N\leq 2^{n-1}+2^{n-3}$.
The answer is in fact no in general, as shown by Kahn and Kalai [KaKa93], who proved that it is false for $n>2014$. The current smallest $n$ where Borsuk's conjecture is known to be false is $n=64$, a result of Brouwer and Jenrich [BrJe14].
If $\alpha(n)$ is the smallest number of pieces of diameter $<1$ required (so Borsuk's original conjecture was that $\alpha(n)=n+1$) then Kahn and Kalai's construction shows that $\alpha(n)\geq (1.2)^{\sqrt{n}}$. The best upper bound, due to Schramm [Sc88], is that \[\alpha(n) \leq ((3/2)^{1/2}+o(1))^{n}.\]
Kahane [Ka59] showed that $a_n=\frac{1+c}{n}$ with $c>0$ has this property, which Erd\H{s} (unpublished) improved to $a_n=\frac{1}{n}$. Erd\{o}s also showed that $a_n=\frac{1-c}{n}$ with $c>0$ does not have this property.
Solved by Shepp [Sh72], who showed that a necessary and sufficient condition is that \[\sum_n \frac{e^{a_1+\cdots+a_n}}{n^2}=\infty.\]
Kesten [Ke63] proved that $C_k=2k-1-1/2k+O(1/k^2)$, and more precise asymptotics are given by Clisby, Liang, and Slade [CLS07].
Conway and Guttmann [CG93] showed that $C_2\geq 2.62$ and Alm [Al93] showed that $C_2\leq 2.696$. Jacobsen, Scullard, and Guttmann [JSG16] have computed the first few decimal places of $C_2$, showing that \[C_2 = 2.6381585303279\cdots.\]
The restriction to $k\geq 4$ is necessary since Sylvester has shown that $f_3(n)= n^2/6+O(n)$. (See also Burr, Grünbaum, and Sloane [BGS74] and Füredi and Palásti [FuPa84] for constructions which show that $f_3(n)\geq(1/6+o(1))n^2$.)
For $k\geq 4$, Kárteszi [Ka] proved \[f_k(n)\gg_k n\log n.\] Grünbaum [Gr76] proved \[f_k(n) \gg_k n^{1+\frac{1}{k-2}}.\] Erdős speculated this may be the correct order of magnitude, but Solymosi and Stojaković [SoSt13] give a construction which shows \[f_k(n)\gg_k n^{2-O_k(1/\sqrt{\log n})}\]
Erdős thought that $g(n) \gg n$, but in fact $g(n)=o(n)$, which follows from the density Hales-Jewett theorem proved by Furstenberg and Katznelson [FuKa91] (see [185]).
It may be true that there are $\gg n$ many such points, or that this is true on average. In [Er97e] Erdős offers \$500 for a solution to this problem, but it is unclear whether he intended this for proving the existence of a single such point or for $\gg n$ many such points.
In [Er97e] Erdős wrote that he initially 'overconjectured' and thought that the answer to this problem is the same as for the number of distinct distances between all pairs (see [89]), but this was disproved by Harborth. It could be true that the answers are the same up to an additive factor of $n^{o(1)}$.
The best known bound is \[\gg n^{c-o(1)},\] due to Katz and Tardos [KaTa04], where \[c=\frac{48-14e}{55-16e}=0.864137\cdots.\]
Erdős, Hickerson, and Pach [EHP89] proved that $u_{\sqrt{2}}(n)\asymp n^{4/3}$ and $u_D(n)\gg n\log^*n$ for all $D>1$ and $n\geq 2$ (where $\log^*$ is the iterated logarithm function).
This lower bound was improved by Swanepoel and Valtr [SwVa04] to $u_D(n) \gg n\sqrt{\log n}$. The best upper bound for general $D$ is $u_D(n)\ll n^{4/3}$.
Solved (for all sufficiently large $n$) completely by Erdős and Salamon [ErSa88]; the full description is too complicated to be given here.
Let $F(n)$ count the number of possible sets $A$ that can be constructed this way. Is it true that \[F(n) \leq \exp(O(\sqrt{n}))?\]
Soifer proved [So09] that if we relax congruence to similarity then every triangle can be cut into $n$ similar triangles when $n\neq 2,3,5$ and there exists a triangle that cannot be cut into $2$, $3$, or $5$ similar triangles.
See also [634].
In particular, it is not known if $19$ has this property (i.e. are there $19$ congruent triangles which can be assembled into a triangle?).
For more on this problem see these slides from a talk by Michael Beeson. As a demonstration of this problem we include a picture of a cutting of an equilateral triangle into $27$ congruent triangles from these slides.
Soifer proved [So09] that if we relax congruence to similarity then every triangle can be cut into $N$ similar triangles when $N\neq 2,3,5$.
If one requires the smaller triangles to be similar to the larger triangle then the only possible values of $N$ are $n^2,n^2+m^2,3n^2$, proved by Snover, Waiveris, and Williams [SWW91].
See also [633].
Zach Hunter has observed that taking $n$ points equally spaced on a circle disproves this conjecture. In the spirit of related conjectures of Erdős and others, presumably some kind of assumption that the points are in general position (e.g. no three on a line and no four on a circle) was intended.
More generally, one can ask how many distances $A$ must determine if every set of $p$ points determines at least $q$ points.
See also [657].
In [Er73] Erdős says it is not even known in $\mathbb{R}$ whether $f(n)\to \infty$. Straus has observed that if $2^k\geq n$ then there exist $n$ points in $\mathbb{R}^k$ which contain no isosceles triangle and determine at most $n-1$ distances.
See also [656].
More generally, if $F(2n)$ is the minimal number of such distances, and $f(2n)$ is minimal number of distinct distances between any $2n$ points in $\mathbb{R}^2$, then is $f \ll F$?
See also [89].
Let $x_1,\ldots,x_n\in \mathbb{R}^2$ be such that $d(x_i,x_j)\geq 1$ for all $i\neq j$. Is it true that, provided $n$ is sufficiently large depending on $t$, the number of distances $d(x_i,x_j)\leq t$ is less than or equal to $f(t)$ with equality perhaps only for the triangular lattice?
In particular, is it true that the number of distances $\leq \sqrt{3}-\epsilon$ is less than $1$?
This is essentially verbatim the problem description in [Er97e], but this does not make sense as written; there must be at least one typo. Suggestions about what this problem intends are welcome.
Erdős also goes on to write 'Perhaps the following stronger conjecture holds: Let $t_1<t_2<\cdots$ be the set of distances occurring in the triangular lattice. $t_1=1$ $t_2=\sqrt{3}$ $t_3=3$ $t_4=5$ etc. Is it true that there is an $\epsilon_n$ so that for every set $y_1,\ldots,$ with $d(y_i,y_j)\geq 1$ the number of distances $d(y_i,y_j)<t_n$ is less than $f(t_n)$?'
Again, this is nonsense interpreted literally; I am not sure what Erdős intended.
Estimate $f_k(n)$ and $F_k(n)$ - in particular, determine $\lim F_k(n)/n^2$ and $\lim f_k(n)/n^2$.
Estimate the chromatic number $\chi(G_n)$. Does it grow exponentially in $n$? Does \[\lim_{n\to \infty}\chi(G_n)^{1/n}\] exist?
Prove that there are at most \[\exp(O(n^{1/2}))\] many line-compatible sequences.
Erdős writes that it is 'easy' to prove there are at least \[\exp(cn^{1/2})\] many such sequences for some constant $c>0$, but expected proving the upper bound to be difficult. Once it is done, he asked for the existence and value of \[\lim_{n\to \infty}\frac{\log f(n)}{n^{1/2}},\] where $f(n)$ counts the number of line-compatible sequences.
This is true, and was proved by Szemerédi and Trotter [SzTr83].
See also [732].
The previous configurations are the only examples, as proved by Ackerman, Buchin, Knauer, Pinchasi, and Rote [ABKPR08].
Is it true that $f(n)\leq \frac{n}{2}+O(1)$?
See also [753].
Erdős believed this conjectured upper bound should hold even if we count equilateral triangles of any size.
The answer is yes: Bhowmick [Bh24] constructs a set of $n$ points in $\mathbb{R}^2$ such that $\lfloor\frac{n}{4}\rfloor$ distances occur at least $n+1$ times. More generally, they construct, for any $m$ and large $n$, a set of $n$ points such that $\lfloor \frac{n}{2(m+1)}\rfloor$ distances occur at least $n+m$ times.
Erdős and Sós proved that $c\geq 1/2$. Gyárfás and Lehel [GyLe95] proved \[\frac{1}{2}<c<\frac{3}{5}.\] (The example proving the upper bound is the set of the first $n$ Fibonacci numbers.)
Estimate $t(n)$. In particular, is it true that $t(n)=o(n)$?
Resolved by Alon [Al91] who proved $t(n) \ll n^{2/3}\log n$.
Determine $n_k$.
Is it true that $A$ is the union of a finite number of sets where no three are on a line?