Are there infinitely many practical $m$ such that \[h(m) < (\log\log m)^{O(1)}?\] Is it true that $h(n!)<n^{o(1)}$? Or perhaps even $h(n!)<(\log n)^{O(1)}$?
Are there infinitely many practical $m$ such that \[h(m) < (\log\log m)^{O(1)}?\] Is it true that $h(n!)<n^{o(1)}$? Or perhaps even $h(n!)<(\log n)^{O(1)}$?
The sequence of practical numbers is A005153 in the OEIS.
Hickerson conjectured the largest solution is \[16! = 14! 5!2!.\] The condition $a_1<n-1$ is necessary to rule out the trivial solutions when $n=a_2!\cdots a_k!$.
Surányi was the first to conjecture that the only non-trivial solution to $a!b!=n!$ is $6!7!=10!$.
Alladi and Grinstead [AlGr77] have obtained similar results when the $a_i$ are restricted to prime powers.
Overholt [Ov93] has shown that this has only finitely many solutions assuming a weak form of the abc conjecture.
There are no other solutions below $10^9$ (see the OEIS page).
Jonas Barfield has found the solution \[10! = 48^4 - 36^4=12^4\cdot 175.\]
See also [401].
See also [404].
Is there a prime $p$ and an infinite sequence $a_1<a_2<\cdots$ such that if $p^{m_k}$ is the highest power of $p$ dividing $\sum_{i\leq k}a_i!$ then $m_k\to \infty$?
Erdős and Graham ask this allowing the case $p=2$, but this is presumably an oversight, since clearly there are infinitely many solutions to this equation when $p=2$.
Brindza and Erdős [BrEr91] proved that are finitely many such solutions. Yu and Liu [YuLi96] showed that the only solutions are \[2!+1^2=3\] \[2!+5^2=3^3\] and \[4!+1^4=5^2.\]
Mehtaab Sawhney has shared the following simple argument that proves that the above limit points are in fact the only ones.
If $v_p(m)$ is the largest $k$ such that $p^k\mid m$ then $\tau(m)=\prod_p (v_p(m)+1)$ and so \[\frac{\tau((n+1)!)}{\tau(n!)} = \prod_{p|n+1}\left(1+\frac{v_p(n+1)}{v_p(n!)+1}\right).\] Note that $v_p(n!)\geq n/p$, and furthermore $n+1$ has $<\log n$ prime divisors, each of which satisfy $v_p(n+1)<\log n$. It follows that the contribution from $p\leq n^{2/3}$ is at most \[\left(1+\frac{\log n}{n^{1/3}}\right)^{\log n}\leq 1+o(1).\]
There is at most one $p\mid n+1$ with $p\geq n^{2/3}$ which (if present) contributes exactly \[\left(1+\frac{1}{\frac{n+1}{p}}\right).\] We have proved the claim, since these two facts combined show that the ratio in question is either $1+o(1)$ or $1+1/k+o(1)$, the latter occurring if $n+1=pk$ for some $p>n^{2/3}$.
After receiving Sawhney's argument I found that this had already been proved, with essentially the same argument, by Erdős, Graham, Ivić, and Pomerance [EGIP].
Balakran [Ba29] proved this holds for $k=1$ - that is, $(n+1)^2\mid \binom{2n}{n}$ for infinitely many $n$. It is a classical fact that $(n+1)\mid \binom{2n}{n}$ for all $n$ (see Catalan numbers).
Erdős, Graham, Ruzsa, and Straus observe that the method of Balakran can be further used to prove that there are infinitely many $n$ such that \[(n+k)!(n+1)! \mid (2n)!\] (in fact this holds whenever $k<c \log n$ for some small constant $c>0$).
Erdős [Er68c] proved that if $a!b!\mid n!$ then $a+b\leq n+O(\log n)$.
By Legendre's formula $a! b! \mid n!(a+b-n)!$ is true if and only if for all primes $p$ \[s_p(n)+s_p(a+b-n) \leq s_p(a)+s_p(b),\] where $s_p(n)$ is the sum of the base $p$ digits of $n$.
See also [729].
This problem is asking if $a!b!\mid n!$ 'ignoring what happens on small primes' still implies $a+b+\leq n+O(\log n)$.
See also [728].
Prove that there exists some $c>0$ such that \[h(n) \sim c \left(\frac{n}{\log n}\right)^{1/2}\] as $n\to \infty$.