Are there infinitely many practical $m$ such that \[h(m) < (\log\log m)^{O(1)}?\] Is it true that $h(n!)<n^{o(1)}$? Or perhaps even $h(n!)<(\log n)^{O(1)}$?
Are there infinitely many practical $m$ such that \[h(m) < (\log\log m)^{O(1)}?\] Is it true that $h(n!)<n^{o(1)}$? Or perhaps even $h(n!)<(\log n)^{O(1)}$?
The sequence of practical numbers is A005153 in the OEIS.
Tenenbaum asked the weaker variant (still open) where for every $\epsilon>0$ there is some $k=k(\epsilon)$ such that at least $1-\epsilon$ density of all integers have a divisor of the form $a+k$ for some $a\in A$.
Is it true that \[Q(x)\gg_k (\log x)^k\] for every $k\geq 1$?
The answer to this problem is no: Nicolas [Ni71] proved that \[Q(x) \ll (\log x)^{O(1)}.\]
If $\delta'(n)$ is the density of integers which have exactly one divisor in $(n,2n)$ then is it true that $\delta'(n)=o(\delta(n))$?
Among many other results in [Fo08], Ford also proves that the second conjecture is false, and more generally that if $\delta_r(n)$ is the density of integers with exactly $r$ divisors in $(n,2n)$ then $\delta_r(n)\gg_r\delta(n)$.
A more precise result was proved by Hall and Tenenbaum [HaTe88] (see Section 4.6), who showed that the upper density is $\ll\epsilon \log(2/\epsilon)$. Hall and Tenenbaum further prove that $\tau^+(n)/\tau(n)$ has a distribution function.
Erdős and Graham also asked whether there is a good inequality known for $\sum_{n\leq x}\tau^+(n)$. This was provided by Ford [Fo08] who proved \[\sum_{n\leq x}\tau^+(n)\asymp x\frac{(\log x)^{1-\alpha}}{(\log\log x)^{3/2}}\] where \[\alpha=1-\frac{1+\log\log 2}{\log 2}=0.08607\cdots.\]
See also [448].
On the other hand, Cambie has observed that if $\epsilon\ll 1/n$ then $y(\epsilon,n)\sim 2n$: indeed, if $y<2n$ then this is impossible taking $x+n$ to be a multiple of the lowest common multiple of $\{n+1,\ldots,2n-1\}$. On the other hand, for every fixed $\delta\in (0,1)$ and $n$ large every $2(1+\delta)n$ consecutive elements contains many elements which are a multiple of an element in $(n,2n)$.
What is the size of $D_n\backslash \cup_{m<n}D_m$?
If $f(N)$ is the minimal $n$ such that $N\in D_n$ then is it true that $f(N)=o(N)$? Perhaps just for almost all $N$?
The same question can be asked for those $n$ which do not have distinct sums of sets of divisors, but any proper divisor of $n$ does (which are listed as A119425 in the OEIS).
Benkoski and Erdős [BeEr74] ask about these two sets, and also about the set of $n$ that have a divisor expressible as a distinct sum of other divisors of $n$, but where no proper divisor of $n$ has this property.
Are there any odd weird numbers? Are there infinitely many primitive weird numbers, i.e. those such that no proper divisor of $n$ is weird?
Melfi [Me15] has proved that there are infinitely many primitive weird numbers, conditional on the fact that $p_{n+1}-p_n<\frac{1}{10}p_n^{1/2}$ for all large $n$, which in turn would follow from well-known conjectures concerning prime gaps.
The sequence of weird numbers is A006037 in the OEIS. Fang [Fa22] has shown there are no odd weird numbers below $10^{21}$, and Liddy and Riedl [LiRi18] have shown that an odd weird number must have at least 6 prime divisors.
Terence Tao has observed that, for any divisor $m\mid n$, \[\frac{\tau(n/m)}{m} \leq G(n) \leq \tau(n),\] and hence for example $\tau(n)/4\leq G(n)\leq \tau(n)$ for even $n$. It is easy to then see that $G(n)$ grows on average, and in general behaves very similarly to $\tau(n)$ (and in particular the answer to the first question is yes). Tao suggests that this was a mistaken conjecture of Erdős, which he soon corrected a year later to [448].
Indeed, in [Er82e] Erdős recalls this conjecture and observes that it is indeed trivial that $G(n)\to \infty$ for almost all $n$, and notes that he and Tenenbaum proved that $G(n)/\tau(n)$ has a continuous distribution function.
Cambie has calculated that unimodularity fails even for $n=2$ and $n=3$. For example, \[\delta_1(3,6)= 0.35\quad \delta_1(3,7)\approx 0.33\quad \delta_1(3,8)\approx 0.3619.\]
Furthermore, Cambie [Ca25] has shown that, for fixed $n$, the sequence $\delta_1(n,m)$ has superpolynomially many local maxima $m$.
See also [446].
Estimate $h(n)$ and $H(n)$. Is it true that $H(n)/h(n)\to \infty$ for almost all $n$?
See also [695].
See also [696].
Do there exist constants $c_1,c_2>0$ such that \[d_t \sim \frac{c_1}{(\log t)^{c_2}}\] as $t\to \infty$?