5 solved out of 16 shown

If $G$ is a graph with infinite chromatic number and $a_1<a_2<\cdots $ are lengths of the odd cycles of $G$ then $\sum \frac{1}{a_i}=\infty$.

Conjectured by Hajnal and Erdős and solved by Liu and Montgomery [LiMo20]. The lower density of the set can be $0$ since there are graphs of arbitrarily large chromatic number and girth.

If $G$ is a graph which contains odd cycles of $\leq k$ different lengths then $\chi(G)\leq 2k+2$, with equality if and only if $G$ contains $K_{2k+2}$.

Conjectured by Bollobás and Erdős. Bollobás and Shelah have confirmed this for $k=1$. Proved by Gyárfás [Gy92], who proved the stronger result that, if $G$ is 2-connected, then $G$ is either $K_{2k+2}$ or contains a vertex of degree at most $2k$.

A stronger form was established by Gao, Huo, and Ma [GaHuMa21], who proved that if a graph $G$ has chromatic number $\chi(G)\geq 2k+3$ then $G$ contains cycles of $k+1$ consecutive odd lengths.

Does every graph on $n$ vertices with $>\mathrm{ex}(n;C_4)$ edges contain $\gg n^{1/2}$ many copies of $C_4$?

Conjectured by Erdős and Simonovits, who could not even prove that at least $2$ copies of $C_4$ are guaranteed.

He, Ma, and Yang [HeMaYa21] have proved this conjecture when $n=q^2+q+1$ for some even integer $q$.

$1000

Does every graph with minimum degree at least 3 contain a cycle of length $2^k$ for some $k\geq 2$?

Conjectured by Erdős and Gyárfás, who believed the answer must be negative, and in fact for every $r$ there must be a graph of minimum degree at least $r$ without a cycle of length $2^k$ for any $k\geq 2$.

This was solved in the affirmative if the minimum degree is larger than some absolute constant by Liu and Montgomery [LiMo20] (therefore disproving the above stronger conjecture of Erdős and Gyárfás). Liu and Montgomery prove a much stronger result: if the average degree of $G$ is sufficiently large then there is some large integer $\ell$ such that for every even integer $m\in [(\log \ell)^8,\ell]$, $G$ contains a cycle of length $m$.

Let $G$ be a graph with $n$ vertices and $kn$ edges, and $a_1<a_2<\cdots $ be the lengths of cycles in $G$. Is the sum $\sum\frac{1}{a_i}$ minimised when $G$ is a complete bipartite graph?

A problem of Erdős and Hajnal. Gyárfás, Komlós, and Szemerédi [GyKoSz84] have proved that this sum is $\gg \log k$. Liu and Montgomery [LiMo20] have proved the asymptotically sharp lower bound of $\geq (\tfrac{1}{2}-o(1))\log k$.

Is it true that for every pair $a,b\geq 1$ such that either $a$ is even or both $a$ and $b$ are odd then there is $c=c(a,b)$ such that every graph with average degree at least $c$ contains a cycle whose length is $\equiv a\pmod{b}$?

This has been proved by Bollobás [Bo77]. The best dependence of the constant $c(a,b)$ is unknown.

$100

Is there a set $A\subset \mathbb{N}$ of density $0$ and a constant $c>0$ such that every graph on sufficiently many vertices with average degree $\geq c$ contains a cycle whose length is in $A$?

Bollobás proved that such a $c$ does exist if $A$ is an infinite arithmetic progression containing even numbers. Erdős was 'almost certain' that if $A$ is the set of powers of $2$ then no such $c$ exists (although conjectures that $n$ vertices and average degree $\gg (\log n)^{C}$ suffices for some $C=O(1)$). If $A$ is the set of squares (or the set of $p\pm 1$ for $p$ prime) then he had no guess.

Solved by Verstraëte [Ve05], who gave a non-constructive proof that such a set $A$ exists.

Liu and Montgomery [LiMo20] proved that in fact this is true when $A$ is the set of powers of $2$ (more generally any set of even numbers which doesn't grow too quickly) - in particular this contradicts the previous belief of Erdős.

$500

Let $f(n)\to \infty$ (possibly very slowly). Is there a graph of infinite chromatic number such that every finite subgraph on $n$ vertices can be made bipartite by deleting at most $f(n)$ edges?

Conjectured by Erdős, Hajnal, and Szemerédi [ErHaSz82]. Rödl [Ro82] has proved this for hypergraphs. It is open even for $f(n)=\sqrt{n}$. Erdős offered \$500 for a proof but only \$250 for a counterexample. This fails (even with $f(n)\gg n$) if the graph has chromatic number $\aleph_1$.

The cycle set of a graph $G$ on $n$ vertices is a set $A\subseteq \{3,\ldots,n\}$ such that there is a cycle in $G$ of length $\ell$ if and only if $\ell \in A$. Let $f(n)$ count the number of possible such $A$. Prove that $f(n)=o(2^n)$.

Conjectured by Erdős and Faudree, who showed that $f(n) > 2^{n/2}$, and further speculate that $f(n)/2^{n/2}\to \infty$. This conjecture was proved by Verstraëte [Ve04], who proved the number of such sets is
\[\ll 2^{n-n^c}\]
for some constant $c>0$.

For every $k\geq 3$ and $n\geq 2$ is there some finite $f(n,k)$ such that every graph of chromatic number $\geq f(n,k)$ contains a subgraph of girth at least $k$ and chromatic number at least $n$?

Conjectured by Erdős and Hajnal. Rödl [Ro77] has proved the $k=3$ case. The infinite version (whether every graph of infinite chromatic number contains a subgraph of infinite chromatic number whose girth is $>k$) is also open.

Is there some $F(n)$ such that every graph with chromatic number $\aleph_1$ has, for all large $n$, a subgraph with chromatic number $n$ on at most $F(n)$ vertices?

Conjectured by Erdős, Hajnal, and Szemerédi [ErHaSz82]. This fails if the graph has chromatic number $\aleph_0$.

Let $c>0$ and $G$ be a graph of chromatic number $\aleph_1$. Are there infinitely many $n$ such that $G$ contains a subgraph on $n$ vertices which cannot be made bipartite by deleting at most $cn$ edges?

Conjectured by Erdős, Hajnal, and Szemerédi [ErHaSz82].

Any graph on $n$ vertices can be decomposed into $O(n)$ many cycles and edges.

Let $G$ be a graph with $n$ vertices and $\delta n^{2}$ edges. Are there subgraphs $H_1,H_2\subseteq G$ such that

- $H_1$ has $\gg \delta^3n^2$ edges and every two edges in $H_1$ are contained in a cycle of length at most $6$, and furthermore if two edges share a vertex they are on a cycle of length $4$, and
- $H_2$ has $\gg \delta^2n^2$ edges and every two edges in $H_2$ are contained in a cycle of length at most $8$.

A problem of Erdős, Duke, and Rödl. Duke and Erdős [DuEr83], who proved the first if $n$ is sufficiently large depending on $\delta$. The real challenge is to prove this when $\delta=n^{-c}$ for some $c>0$. Duke, Erdős, and Rödl [DER84] proved the first statement with a $\delta^5$ in place of a $\delta^3$.

Fox and Sudakov [FoSu08b] have proved the second statement when $\delta >n^{-1/5}$.

What is the maximum number of edges that a graph on $n$ vertices can have if it does not contain two edge-disjoint cycles with the same vertex set?

Pyber, Rödl, and Szemerédi [PRS95] constructed such a graph with $\gg n\log\log n$ edges.

Chakraborti, Janzer, Methuku, and Montgomery [CJMM24] have shown that such a graph can have at most $n(\log n)^{O(1)}$ many edges. Indeed, they prove that there exists a constant $C>0$ such that for any $k\geq 2$ there is a $c_k$ such that if a graph has $n$ vertices and at least $c_kn(\log n)^{C}$ many edges then it contains $k$ pairwise edge-disjoint cycles with the same vertex set.