A stronger form was established by Gao, Huo, and Ma [GaHuMa21], who proved that if a graph $G$ has chromatic number $\chi(G)\geq 2k+3$ then $G$ contains cycles of $k+1$ consecutive odd lengths.
He, Ma, and Yang [HeMaYa21] have proved this conjecture when $n=q^2+q+1$ for some even integer $q$.
David Penman has observed that this is certainly true if the graph has uncountable chromatic number, since by a result of Erdős and Hajnal [ErHa66] such a graph must contain arbitrarily large finite complete bipartite graphs (see also Theorem 3.17 of Reiher [Re24]).
Zach Hunter has observed that this follows from the work of Liu and Montgomery [LiMo20]: if $G$ has infinite chromatic number then, for infinitely many $r$, it must contain some finite connected subgraph $G_r$ with chromatic number $r$ (via the de Bruijn-Erdős theorem [dBEr51]). Each $G_r$ contains some subgraph $H_r$ with minimum degree at least $r-1$, and hence via Theorem 1.1 of [LiMo20] there exists some $\ell_r\geq r^{1-o(1)}$ such that $H_r$ contains a cycle of every even length in $[(\log \ell)^8,\ell]$.
See also [64].
This was solved in the affirmative if the minimum degree is larger than some absolute constant by Liu and Montgomery [LiMo20] (therefore disproving the above stronger conjecture of Erdős and Gyárfás). Liu and Montgomery prove a much stronger result: if the average degree of $G$ is sufficiently large then there is some large integer $\ell$ such that for every even integer $m\in [(\log \ell)^8,\ell]$, $G$ contains a cycle of length $m$.
An infinite tree with minimum degree $3$ shows that the answer is trivially false for infinite graphs.
See also the entry in the graphs problem collection.
See also [57].
Erdős was 'almost certain' that if $A$ is the set of powers of $2$ then no such $c$ exists (although he conjectured that $n$ vertices and average degree $\gg (\log n)^{C}$ suffices for some $C=O(1)$). If $A$ is the set of squares (or the set of $p\pm 1$ for $p$ prime) then he had no guess.
Solved by Verstraëte [Ve05], who gave a non-constructive proof that such a set $A$ exists.
Liu and Montgomery [LiMo20] proved that in fact this is true when $A$ is the set of powers of $2$ (more generally any set of even numbers which doesn't grow too quickly) - in particular this contradicts the previous belief of Erdős.
Rödl [Ro82] has proved this for hypergraphs, and also proved there is such a graph (with chromatic number $\aleph_0$) if $f(n)=\epsilon n$ for any fixed constant $\epsilon>0$.
It is open even for $f(n)=\sqrt{n}$. Erdős offered \$500 for a proof but only \$250 for a counterexample. This fails (even with $f(n)\gg n$) if the graph has chromatic number $\aleph_1$ (see [111]).
Prove that $f(n)=o(2^n)$.
Prove that $f(n)/2^{n/2}\to \infty$.
One can also ask about the existence and value of $\lim f(n)^{1/n}$.
In [Er79b] Erdős also asks whether \[\lim_{k\to \infty}\frac{f(k,r+1)}{f(k,r)}=\infty.\]
The best bound available is due to Bucić and Montgomery [BM22], who prove that $O(n\log^*n)$ many cycles and edges suffice, where $\log^*$ is the iterated logarithm function.
Conlon, Fox, and Sudakov [CFS14] proved that $O_\epsilon(n)$ cycles and edges suffice if $G$ has minimum degree at least $\epsilon n$, for any $\epsilon>0$.
See also [583].
Fox and Sudakov [FoSu08b] have proved the second statement when $\delta >n^{-1/5}$.
Chakraborti, Janzer, Methuku, and Montgomery [CJMM24] have shown that such a graph can have at most $n(\log n)^{O(1)}$ many edges. Indeed, they prove that there exists a constant $C>0$ such that for any $k\geq 2$ there is a $c_k$ such that if a graph has $n$ vertices and at least $c_kn(\log n)^{C}$ many edges then it contains $k$ pairwise edge-disjoint cycles with the same vertex set.
The answer is yes, proved by Sudakov and Verstraëte [SuVe08], who in fact proved that under the assumption of average degree $k$ and girth $>2s$ there are at least $\gg k^s$ many consecutive even integers which are cycle lengths in $G$.