The original question was answered by Szemerédi and Vu [SzVu06] (who proved that the answer is yes).
This is best possible, since Folkman [Fo66] showed that for all $\epsilon>0$ there exists a multiset $A$ with \[\lvert A\cap \{1,\ldots,N\}\rvert\ll N^{1+\epsilon}\] for all $N$, such that $A$ is not subcomplete.
This is true, and was proved by Szemerédi and Vu [SzVu06]. The stronger conjecture that this is true under \[\lvert A\cap \{1,\ldots,N\}\rvert\geq (2N)^{1/2}\] seems to be still open (this would be best possible as shown by [Er61b].
Is it true that there are infinitely many $k$ such that $T(n^k)>T(n^{k+1})$?