Proved by Sárkzözy [Sa85] for all sufficiently large $n$, and by Granville and Ramaré [GrRa96] for all $n\geq 5$.
More generally, if $f(n)$ is the largest integer such that, for some prime $p$, we have $p^{f(n)}$ dividing $\binom{2n}{n}$, then $f(n)$ should tend to infinity with $n$. Can one even disprove that $f(n)\gg \log n$?
A positive answer would imply that \[\sum_{p\leq n}1_{p\mid \binom{2n}{n}}\frac{1}{p}=(1-o(1))\log\log n,\] and Erdős, Graham, Ruzsa, and Straus say there is 'no doubt' this latter claim is true.
Weisenberg has provided four easy examples that show Erdős and Graham were too optimistic here: \[\binom{7}{3}=5\cdot 7,\] \[\binom{10}{4}= 2\cdot 3\cdot 5\cdot 7,\] \[\binom{14}{4} = 7\cdot 11\cdot 13,\] and \[\binom{15}{6}=5\cdot 7\cdot 11\cdot 13.\]
Pomerance [Po14] has shown that for any $k\geq 0$ there are infinitely many $n$ such that $n-k\mid\binom{2n}{n}$, although the set of such $n$ has upper density $<1/3$. Pomerance also shows that the set of $n$ such that \[\prod_{1\leq i\leq k}(n+i)\mid \binom{2n}{n}\] has density $1$.
The smallest $n$ for each $k$ are listed as A375077 on the OEIS.
Erdős [Er79d] writes it 'seems certain' that this holds for every $c>0$, with only a finite number of exceptions (depending on $c$). Standard heuristics on prime gaps suggest that the largest prime divisor of $\binom{n}{k}$ is in fact \[> \min(n-k+1, e^{c\sqrt{k}})\] for some constant $c>0$.
Let $f(n)$ be the smallest $k$ such that $u>n^2$. Give bounds for $f(n)$.
Mahler's theorem implies $f(n)\to \infty$ as $n\to \infty$, but is ineffective, and so gives no bounds on the growth of $f(n)$.
One can similarly ask for estimates on the smallest integer $f(n,k)$ such that if $m$ is the factor of $\binom{n}{k}$ containing all primes $\leq f(n,k)$ then $m > n^2$.
Erdős and Szekeres further conjectured that $p\geq i$ can be improved to $p>i$ except in a few special cases. In particular this fails when $i=2$ and $n$ being some particular powers of $2$. They also found some counterexamples when $i=3$, but only one counterexample when $i\geq 4$: \[\textrm{gcd}\left(\binom{28}{5},\binom{28}{14}\right)=2^3\cdot 3^3\cdot 5.\]
It is known that $f(n)=n/P(n)$ when $n$ is the product of two primes. Another example is $n=30$.
For the second problem, it is easy to see that for any $n$ we have $f(n)\geq p(n)$, where $p(n)$ is the smallest prime dividing $n$, and hence there are infinitely many $n$ (those $=p^2)$ such that $f(n)\geq n^{1/2}$.
For example $(87,88)$ and $(607,608)$.
Kummer's theorem implies that, for all odd primes $p$, $p\mid \binom{2n}{n}$ if and only some base $p$ digit of $n$ is $>p/2$, and hence $(n,n+1)$ has the required property if for all primes $p\leq n$ we have $n\not\in \{\frac{p-1}{2},p-1\}\pmod{p}$. Standard heuristics then predict there should be \[\gg \frac{x}{(\log x)^2}\] many such $n\leq x$.
Both Erdős and Singmaster believed the answer to this question is no, and in fact that there exists an absolute upper bound on the number of solutions.
Matomäki, Radziwill, Shao, Tao, and Teräväinen [MRSTT22] have proved that there are always at most two solutions if we restrict $k$ to \[k\geq \exp((\log n)^{2/3+\epsilon}),\] assuming $a$ is sufficiently large depending on $\epsilon>0$.