Logo
All Random Solved Random Open
8 solved out of 23 shown (show only solved or open)
OPEN - $5000
If $A\subseteq \mathbb{N}$ has $\sum_{n\in A}\frac{1}{n}=\infty$ then must $A$ contain arbitrarily long arithmetic progressions?
This is essentially asking for good bounds on $r_k(N)$, the size of the largest subset of $\{1,\ldots,N\}$ without a non-trivial $k$-term arithmetic progression. For example, a bound like \[r_k(N) \ll_k \frac{N}{(\log N)(\log\log N)^2}\] would be sufficient.

Even the case $k=3$ is non-trivial, but was proved by Bloom and Sisask [BlSi20]. Much better bounds for $r_3(N)$ were subsequently proved by Kelley and Meka [KeMe23]. Green and Tao [GrTa17] proved $r_4(N)\ll N/(\log N)^{c}$ for some small constant $c>0$. Gowers [Go01] proved \[r_k(N) \ll \frac{N}{(\log\log N)^{c_k}},\] where $c_k>0$ is a small constant depending on $k$. The current best bounds for general $k$ are due to Leng, Sah, and Sawhney [LSS24], who show that \[r_k(N) \ll \frac{N}{\exp((\log\log N)^{c_k})}\] for some constant $c_k>0$ depending on $k$.

Curiously, Erdős [Er83c] thought this conjecture was the 'only way to approach' the conjecture that there are arbitrarily long arithmetic progressions of prime numbers, now a theorem due to Green and Tao [GrTa08] (see [219]).

In [Er81] Erdős makes the stronger conjecture that \[r_k(N) \ll_C\frac{N}{(\log N)^C}\] for every $C>0$ (now known for $k=3$ due to Kelley and Meka [KeMe23]) - see [140].

See also [139] and [142].

SOLVED - $1000
Let $r_k(N)$ be the size of the largest subset of $\{1,\ldots,N\}$ which does not contain a non-trivial $k$-term arithmetic progression. Prove that $r_k(N)=o(N)$.
A conjecture of Erdős and Turán. Proved by Szemerédi [Sz74]. The best known bounds are due to Kelley and Meka [KeMe23] for $k=3$ (with further slight improvements in [BlSi23]), Green and Tao [GrTa17] for $k=4$, and Leng, Sah, and Sawhney [LSS24] for $k\geq 5$.

See also [3].

Additional thanks to: Zachary Chase
SOLVED - $500
Let $r_3(N)$ be the size of the largest subset of $\{1,\ldots,N\}$ which does not contain a non-trivial $3$-term arithmetic progression. Prove that $r_3(N)\ll N/(\log N)^C$ for every $C>0$.
Proved by Kelley and Meka [KeMe23]. In [ErGr80] and [Er81] it is conjectured that this holds for every $k$-term arithmetic progression.

See also [3].

OPEN
Let $k\geq 3$. Are there $k$ consecutive primes in arithmetic progression?
Green and Tao [GrTa08] have proved that there must always exist some $k$ primes in arithmetic progression, but these need not be consecutive. Erdős called this conjecture 'completely hopeless at present'.

The existence of such progressions for small $k$ has been verified for $k\leq 10$, see the Wikipedia page. It is open, even for $k=3$, whether there are infinitely many such progressions.

See also [219].

Additional thanks to: Prakrish Acharya
OPEN - $10000
Let $r_k(N)$ be the largest possible size of a subset of $\{1,\ldots,N\}$ that does not contain any non-trivial $k$-term arithmetic progression. Prove an asymptotic formula for $r_k(N)$.
Erdős remarked this is 'probably unattackable at present'. In [Er97c] Erdős offered \$1000, but given that he elsewhere offered \$5000 just for (essentially) showing that $r_k(N)=o_k(N/\log N)$, that value seems odd. In [Er81] he offers \$10000, stating it is 'probably enormously difficult'.

The best known upper bounds for $r_k(N)$ are due to Kelley and Meka [KeMe23] for $k=3$, Green and Tao [GrTa17] for $k=4$, and Leng, Sah, and Sawhney [LSS24] for $k\geq 5$. An asymptotic formula is still far out of reach, even for $k=3$.

See also [3] and [139].

Additional thanks to: Zach Hunter
OPEN
Let $h(N)$ be the smallest $k$ such that $\{1,\ldots,N\}$ can be coloured with $k$ colours so that every four-term arithmetic progression must contain at least three distinct colours. Estimate $h(N)$.
Investigated by Erdős and Freud. This has been discussed on MathOverflow, where LeechLattice shows \[h(N) \ll N^{2/3}.\] The observation of Zachary Hunter in that question coupled with the bounds of Kelley-Meka [KeMe23] imply that \[h(N) \gg \exp(c(\log N)^{1/12})\] for some $c>0$.
Additional thanks to: Zachary Hunter
OPEN
Let $k\geq 3$ and $f(k)$ be the supremum of $\sum_{n\in A}\frac{1}{n}$ as $A$ ranges over all sets of positive integers which do not contain a $k$-term arithmetic progression. Estimate $f(k)$.

Is \[\lim_{k\to \infty}\frac{f(k)}{\log W(k)}=\infty\] where $W(k)$ is the van der Waerden number?

Gerver [Ge77] has proved \[f(k) \geq (1+o(1))k\log k.\] It is trivial that \[\frac{f(k)}{\log W(k)}\geq \frac{1}{2},\] but improving the right-hand side to any constant $>1/2$ is open.
OPEN
Let $N(k,\ell)$ be the minimal $N$ such that for any $f:\{1,\ldots,N\}\to\{-1,1\}$ there must exist a $k$-term arithmetic progression $P$ such that \[ \left\lvert \sum_{n\in P}f(n)\right\rvert\geq \ell.\] Find good upper bounds for $N(k,\ell)$. Is it true that for any $c>0$ there exists some $C>1$ such that \[N(k,ck)\leq C^k?\] What about \[N(k,2)\leq C^k\] or \[N(k,\sqrt{k})\leq C^k?\]
Spencer [Sp73] has proved that if $k=2^tm$ with $m$ odd then \[N(k,1)=2^t(k-1)+1.\] Erdős and Graham write that 'no decent bound' is known even for $N(k,2)$. Probabilistic methods imply that, for every fixed constant $c>0$, we have $N(k,ck)>C_c^k$ for some $C_c>1$.
OPEN
Find the smallest $h(d)$ such that the following holds. There exists a function $f:\mathbb{N}\to\{-1,1\}$ such that, for every $d\geq 1$, \[\max_{P_d}\left\lvert \sum_{n\in P_d}f(n)\right\rvert\leq h(d),\] where $P_d$ ranges over all finite arithmetic progressions with common difference $d$.
Cantor, Erdős, Schreiber, and Straus [Er66] proved that $h(d)\ll d!$ is possible. Van der Waerden's theorem implies that $h(d)\to \infty$. Beck [Be17] has shown that $h(d) \leq d^{8+\epsilon}$ is possible for every $\epsilon>0$. Roth's famous discrepancy lower bound [Ro64] implies that $h(d)\gg d^{1/2}$.
Additional thanks to: Zach Hunter
SOLVED
Let $1\leq k<\ell$ be integers and define $F_k(N,\ell)$ to be minimal such that every set $A\subset \mathbb{N}$ of size $N$ which contains at least $F_k(N,\ell)$ many $k$-term arithmetic progressions must contain an $\ell$-term arithmetic progression. Find good upper bounds for $F_k(N,\ell)$. Is it true that \[F_3(N,4)=o(N^2)?\] Is it true that for every $\ell>3$ \[\lim_{N\to \infty}\frac{\log F_3(N,\ell)}{\log N}=2?\]
Erdős remarks the upper bound $o(N^2)$ is certainly false for $\ell >\epsilon \log N$. The answer is yes: Fox and Pohoata [FoPo20] have shown that, for all fixed $1\leq k<\ell$, \[F_k(N,\ell)=N^{2-o(1)}\] and in fact \[F_{k}(N,\ell) \leq \frac{N^2}{(\log\log N)^{C_\ell}}\] where $C_\ell>0$ is some constant. In fact, they show that, if $r_\ell(N)$ is the size of the largest subset of $\{1,\ldots,N\}$ without an $\ell$-term arithmetic progression then there exists some absolute constant $c>0$ such that \[\left(c \frac{r_\ell(N)}{N}\right)^{2(k-1)}N^2 < F_k(N,\ell) <\left(\frac{r_\ell(N)}{N}\right)^{O(1)}N^2.\] Any improved bounds for Szemerédi's theorem (see [139]) therefore yield improved bounds for $F_k(N,\ell)$. In particular, the bounds of Leng, Sah, and Sawhney [LSS24] imply \[F_k(N,\ell) \leq \frac{N^2}{\exp((\log\log N)^{c_\ell})}\] for some constant $c_\ell>0$.
Additional thanks to: Zach Hunter
OPEN
Let $H(k)$ be the smallest $N$ such that in any finite colouring of $\{1,\ldots,N\}$ (into any number of colours) there is always either a monochromatic $k$-term arithmetic progression or a rainbow arithmetic progression (i.e. all elements are different colours). Estimate $H(k)$. Is it true that \[H(k)^{1/k}/k \to \infty\] as $k\to\infty$?
This type of problem belongs to 'canonical' Ramsey theory. The existence of $H(k)$ follows from Szemerédi's theorem, and it is easy to show that $H(k)^{1/k}\to\infty$.
SOLVED
Let $A=\{a_1,a_2,\ldots\}\subset \mathbb{R}^d$ be an infinite sequence such that $a_{i+1}-a_i$ is a positive unit vector (i.e. is of the form $(0,0,\ldots,1,0,\ldots,0)$). For which $d$ must $A$ contain a three-term arithmetic progression?
This is true for $d\leq 3$ and false for $d\geq 4$.

This problem is equivalent to one on 'abelian squares' (see [231]). In particular $A$ can be interpreted as an infinite string over an alphabet with $d$ letters (each letter describining which of the $d$ possible steps is taken at each point). An abelian square in a string $s$ is a pair of consecutive blocks $x$ and $y$ appearing in $s$ such that $y$ is a permutation of $x$. The connection comes from the observation that $p,q,r\in A\subset \mathbb{R}^d$ form a three-term arithmetic progression if and only if the string corresponding to the steps from $p$ to $q$ is a permutation of the string corresponding to the steps from $q$ to $r$.

This problem is therefore equivalent to asking for which $d$ there exists an infinite string over $\{1,\ldots,d\}$ with no abelian squares. It is easy to check that in fact any finite string of length $7$ over $\{1,2,3\}$ contains an abelian square.

An infinite string without abelian squares was constructed when $d=4$ by Keränen [Ke92]. We refer to a recent survey by Fici and Puzynina [FiPu23] for more background and related results, and a blog post by Renan for an entertaining and educational discussion.

Additional thanks to: Boris Alexeev and Dustin Mixon
SOLVED
Let $k\geq 3$. Must any ordering of $\mathbb{R}$ contain a monotone $k$-term arithmetic progression, that is, some $x_1<\cdots<x_k$ which forms an increasing or decreasing $k$-term arithmetic progression?
The answer is no, even for $k=3$, as shown by Ardal, Brown, and Jungić [ABJ11].

See also [195] and [196].

OPEN
What is the largest $k$ such that in any permutation of $\mathbb{Z}$ there must exist a monotone $k$-term arithmetic progression $x_1<\cdots<x_k$?
Geneson [Ge19] proved that $k\leq 5$. Adenwalla [Ad22] proved that $k\leq 4$.

See also [194] and [196].

Additional thanks to: Boris Alexeev, Stijn Cambie, and Dustin Mixon
OPEN
Must every permutation of $\mathbb{N}$ contain a monotone 4-term arithmetic progression $x_1<x_2<x_3<x_4$?
Davis, Entringer, Graham, and Simmons [DEGS77] have shown that there must exist a monotone 3-term arithmetic progression and need not contain a 5-term arithmetic progression.

See also [194] and [195].

Additional thanks to: Boris Alexeev and Dustin Mixon
OPEN
Can $\mathbb{N}$ be partitioned into two sets, each of which can be permuted to avoid monotone 3-term arithmetic progressions?
If three sets are allowed then this is possible.
Additional thanks to: Boris Alexeev and Dustin Mixon
SOLVED
If $A\subset \mathbb{N}$ is a Sidon set then must the complement of $A$ contain an infinite arithmetic progression?
The answer is yes, as shown by Baumgartner [Ba75].
SOLVED
If $A\subset \mathbb{R}$ does not contain a 3-term arithmetic progression then must $\mathbb{R}\backslash A$ contain an infinite arithmetic progression?
The answer is no, as shown by Baumgartner [Ba75] (whose construction uses the axiom of choice).
OPEN
Does the longest arithmetic progression of primes in $\{1,\ldots,N\}$ have length $o(\log N)$?
It follows from the prime number theorem that such a progression has length $\leq(1+o(1))\log N$.
OPEN
Let $G_k(N)$ be such that any set of $N$ integers contains a subset of size at least $G_k(N)$ which does not contain a $k$-term arithmetic progression. Determine the size of $G_k(N)$. How does it relate to $R_k(N)$, the size of the largest subset of $\{1,\ldots,N\}$ without a $k$-term arithmetic progression? Is it true that \[\lim_{N\to \infty}\frac{R_3(N)}{G_3(N)}=1?\]
First asked and investigated by Riddell [Ri69]. It is trivial that $G_k(N)\leq R_k(N)$, and it is possible that $G_k(N) <R_k(N)$ (for example with $k=3$ and $N=14$). Komlós, Sulyok, and Szemerédi [KSS75] have shown that $R_k(N) \ll_k G_k(N)$.
Additional thanks to: Zachary Chase
SOLVED
Are there arbitrarily long arithmetic progressions of primes?
The answer is yes, proved by Green and Tao [GrTa08]. The stronger claim that there are arbitrarily long arithmetic progressions of consecutive primes is still open.

See also [3] and [141].

OPEN
For any $n$, let $A(n)=\{0<n<\cdots\}$ be the infinite sequence with $a_0=0$ and $a_1=n$, and for $k\geq 1$ we define $a_{k+1}$ as the least integer such that there is no three-term arithmetic progression in $\{a_0,\ldots,a_{k+1}\}$.

Can the $a_k$ be explicitly determined? How fast do they grow?

It is easy to see that $A(1)$ is the set of integers which have no 2 in their base 3 expansion. Odlyzko and Stanley have found similar characterisations are known for $A(3^k)$ and $A(2\cdot 3^k)$ for any $k\geq 0$, see [OdSt78], and conjectured in general that such a sequence always eventually either satisfies \[a_k\asymp k^{\log_23}\] or \[a_k \asymp \frac{k^2}{\log k}.\] There is no known sequence which satisfies the second growth rate, but Lindhurst [Li90] gives data which suggests that $A(4)$ has such growth ($A(4)$ is given as A005487 in the OEIS).

Moy [Mo11] has proved that, for all such sequences, for all $\epsilon>0$, $a_k\leq (\frac{1}{2}+\epsilon)k^2$ for all sufficiently large $k$.

In general, sequences which begin with some initial segment and thereafter are continued in a greedy fashion to avoid three-term arithmetic progressions are known as Stanley sequences.

Additional thanks to: Ralf Stephan
OPEN
Let $N\geq 1$. What is the largest $t$ such that there are $A_1,\ldots,A_t\subseteq \{1,\ldots,N\}$ with $A_i\cap A_j$ a non-empty arithmetic progression for all $i\neq j$?
Simonovits and Sós [SiSo81] have shown that $t\ll N^2$. It is possible that the maximal $t$ is achieved when we take the $A_i$ to be all arithmetic progressions in $\{1,\ldots,N\}$ containing some fixed element.

If we drop the non-empty requirement then Simonovits, Sós, and Graham [SiSoGr80] have shown that \[t\leq \binom{N}{3}+\binom{N}{2}+\binom{N}{1}+1\] and this is best possible.

Additional thanks to: Zachary Hunter