A number of improvements of the constant have been given (see [St23] for a history), with the current record $\sqrt{2/\pi}$ first proved in unpublished work of Elkies and Gleason. Two proofs achieving this constant are provided by Dubroff, Fox, and Xu [DFX21], who in fact prove the exact bound $N\geq \binom{n}{\lfloor n/2\rfloor}$.
In [Er73] and [ErGr80] the generalisation where $A\subseteq (0,N]$ is a set of real numbers such that the subset sums all differ by at least $1$ is proposed, with the same conjectured bound. (The second proof of [DFX21] applies also to this generalisation.)
This problem appears in Erdős' book with Spencer [ErSp74] in the final chapter titled 'The kitchen sink'. As Ruzsa writes in [Ru99] "it is a rich kitchen where such things go to the sink".
The sequence of minimal $N$ for a given $n$ is A276661 in the OEIS.
See also [350].
Even the case $k=3$ is non-trivial, but was proved by Bloom and Sisask [BlSi20]. Much better bounds for $r_3(N)$ were subsequently proved by Kelley and Meka [KeMe23]. Green and Tao [GrTa17] proved $r_4(N)\ll N/(\log N)^{c}$ for some small constant $c>0$. Gowers [Go01] proved \[r_k(N) \ll \frac{N}{(\log\log N)^{c_k}},\] where $c_k>0$ is a small constant depending on $k$. The current best bounds for general $k$ are due to Leng, Sah, and Sawhney [LSS24], who show that \[r_k(N) \ll \frac{N}{\exp((\log\log N)^{c_k})}\] for some constant $c_k>0$ depending on $k$.
Curiously, Erdős [Er83c] thought this conjecture was the 'only way to approach' the conjecture that there are arbitrarily long arithmetic progressions of prime numbers, now a theorem due to Green and Tao [GrTa08] (see [219]).
In [Er81] Erdős makes the stronger conjecture that \[r_k(N) \ll_C\frac{N}{(\log N)^C}\] for every $C>0$ (now known for $k=3$ due to Kelley and Meka [KeMe23]) - see [140].
For all sufficiently large $N$, if $A\sqcup B=\{1,\ldots,2N\}$ is a partition into two equal parts, so that $\lvert A\rvert=\lvert B\rvert=N$, then there is some $x$ such that the number of solutions to $a-b=x$ with $a\in A$ and $b\in B$ is at least $cN$.
Can a lacunary set $A\subset\mathbb{N}$ be an essential component?
Erdős and Rényi have constructed, for any $\epsilon>0$, a set $A$ such that \[\lvert A\cap \{1\ldots,N\}\rvert \gg_\epsilon N^{1/2-\epsilon}\] for all large $N$ and $1_A\ast 1_A(n)\ll_\epsilon 1$ for all $n$.
There is likely nothing special about the integers in this question, and indeed Erdős and Szemerédi also ask a similar question about finite sets of real or complex numbers. The current best bound for sets of reals is the same bound of Rudnev and Stevens above. The best bound for complex numbers is \[\max( \lvert A+A\rvert,\lvert AA\rvert)\gg\lvert A\rvert^{\frac{5}{4}},\] due to Solymosi [So05].
One can in general ask this question in any setting where addition and multiplication are defined (once one avoids any trivial obstructions such as zero divisors or finite subfields). For example, it makes sense for subsets of finite fields. The current record is that if $A\subseteq \mathbb{F}_p$ with $\lvert A\rvert <p^{5/8}$ then \[\max( \lvert A+A\rvert,\lvert AA\rvert)\gg\lvert A\rvert^{\frac{11}{9}+o(1)},\] due to Rudnev, Shakan, and Shkredov [RSS20].
There is also a natural generalisation to higher-fold sum and product sets. For example, in [ErSz83] (and in [Er91]) Erdős and Szemerédi also conjecture that for any $m\geq 2$ and finite set of integers $A$ \[\max( \lvert mA\rvert,\lvert A^m\rvert)\gg \lvert A\rvert^{m-o(1)}.\] See [53] for more on this generalisation and [808] for a stronger form of the original conjecture. See also [818] for a special case.
Erdős and Szemerédi proved that there exist arbitrarily large sets $A$ such that the integers which are the sum or product of distinct elements of $A$ is at most \[\exp\left(c (\log \lvert A\rvert)^2\log\log\lvert A\rvert\right)\] for some constant $c>0$.
See also [52].
See also [3].
The best known upper bounds for $r_k(N)$ are due to Kelley and Meka [KeMe23] for $k=3$, Green and Tao [GrTa17] for $k=4$, and Leng, Sah, and Sawhney [LSS24] for $k\geq 5$. An asymptotic formula is still far out of reach, even for $k=3$.
Is \[\lim_{k\to \infty}\frac{f(k)}{\log W(k)}=\infty\] where $W(k)$ is the van der Waerden number?
Moreira [Mo17] has proved that in any finite colouring of $\mathbb{N}$ there exist $x,y$ such that $\{x,x+y,xy\}$ are all the same colour.
Alweiss [Al23] has proved that, in any finite colouring of $\mathbb{Q}\backslash \{0\}$ there exist arbitrarily large finite $A$ such that all sums and products of distinct elements in $A$ are the same colour. Bowen and Sabok [BoSa22] had proved this earlier for the first non-trivial case of $\lvert A\rvert=2$.
The answer is yes, which is a corollary of the density Hales-Jewett theorem, proved by Furstenberg and Katznelson [FuKa91].
See also [789].
More generally, Bose and Chowla conjectured that the maximum size of $A\subseteq \{1,\ldots,N\}$ with all $r$-fold sums distinct (aside from the trivial coincidences) then \[\lvert A\rvert \sim N^{1/r}.\] This is known only for $r=2$ (see [30]).
The answer is yes, proved by Freiman [Fr73].
Can the $a_k$ be explicitly determined? How fast do they grow?
Moy [Mo11] has proved that, for all such sequences, for all $\epsilon>0$, $a_k\leq (\frac{1}{2}+\epsilon)k^2$ for all sufficiently large $k$.
In general, sequences which begin with some initial segment and thereafter are continued in a greedy fashion to avoid three-term arithmetic progressions are known as Stanley sequences.
If we drop the non-empty requirement then Simonovits, Sós, and Graham [SiSoGr80] have shown that \[t\leq \binom{N}{3}+\binom{N}{2}+\binom{N}{1}+1\] and this is best possible.
Ruzsa suggests that a non-trivial variant of this problem arises if one imposes the stronger condition that \[\lvert A\cap \{1,\ldots,N\}\rvert \sim c_AN^{1/2}\] for some constant $c_A>0$ as $N\to \infty$, and similarly for $B$.
This sequence is at OEIS A005282.
This has been proved for $t\leq 12$ (see Costa and Pellegrini [CoPe20] and the references therein) and for $p-3\leq t\leq p-1$ (see Hicks, Ollis, and Schmitt [HOS19] and the references therein). Kravitz [Kr24] has proved this for \[t \leq \frac{\log p}{\log\log p}.\]
Solved by Erdős, Sárközy, and Sós [ESS89], who in fact prove that there are at least \[\frac{N}{2}-O(N^{1-1/2^{k+1}})\] many even numbers which are of this form. They also prove that if $k=2$ then there are at least \[\frac{N}{2}-O(\log N)\] many even numbers which are of this form, and that $O(\log N)$ is best possible, since there is a $2$-colouring such that no power of $2$ is representable as a monochromatic sum.
A refinement of this problem appears as Problem 25 on the open problems list of Ben Green.
More generally, they prove that $A$ is uniquely determined by $A_k$ if $n$ is divisible by a prime greater than $k$. Selfridge and Straus sound more cautious than Erdős, and it may well be that for all $k>2$ there exist $A,B$ of the same size with identical $A_k=B_k$.
(In [Er61] Erdős states this problem incorrectly, replacing sums with products. This product formulation is easily seen to be false, as observed by Steinerberger: consider the case $k=3$ and subsets of the 6th roots of unity corresponding to $\{0,1,2,4\}$ and $\{0,2,3,4\}$ (as subsets of $\mathbb{Z}/6\mathbb{Z}$). The correct problem statement can be found in the paper of Selfridge and Straus that Erdős cites.)
Ryan Alweiss has provided the following simple argument showing that the answer is yes: suppose we have some red/blue colouring without this property. Without loss of generality, suppose $1$ is coloured red, and then either $3$ or $5$ must be blue.
Suppose first that $3$ is blue. If $n\geq 6$ is red then (considering $1,n,2n-1$) we deduce $2n-1$ is blue, and then (considering $3,n+1,2n-1$) we deduce that $n+1$ is red. In particular the colouring must be eventually constant, and we are done.
Now suppose that $5$ is blue. Arguing similarly (considering $1,n,2n-1$ and $5,n+2,2n-1$) we deduce that if $n\geq 8$ is red then $n+2$ is also red, and we are similarly done, since the colouring must be eventually constant on some congruence class modulo $2$.
This qualitative statement follows from the density Hales-Jewett theorem proved by Furstenberg and Katznelson [FuKa91]. A quantitative proof (yet with very poor bounds) was given by Solymosi [So04].
Give reasonable bounds for $W(3,k)$. In particular, give any non-trivial lower bounds for $W(3,k)$ and prove that $W(3,k) < \exp(k^c)$ for some constant $c<1$.
Green [Gr22] established the superpolynomial lower bound \[W(3,k) \geq \exp\left( c\frac{(\log k)^{4/3}}{(\log\log k) ^{1/3}}\right)\] for some constant $c>0$ (in particular disproving a conjecture of Graham that $W(3,k)\ll k^2$). Hunter [Hu22] improved this to \[W(3,k) \geq \exp\left( c\frac{(\log k)^{2}}{\log\log k}\right).\] The first to show that $W(3,k) < \exp(k^c)$ for some $c<1$ was Schoen [Sc21]. The best upper bound currently known is \[W(3,k) \ll \exp\left( O((\log k)^9)\right),\] which follows from the best bounds known for sets without three-term arithmetic progressions (see [BlSi23] which improves slightly on the bounds due to Kelley and Meka [KeMe23]).
Is there a basis $A$ of order $2$ such that if $A=A_1\sqcup A_2$ then $A_1+A_1$ and $A_2+A_2$ cannot both have bounded gaps?
The answer is no, proved in a strong form by Vaughan [Va72], who showed that in fact \[\sum_{n\leq N} 1_A\ast 1_A\ast 1_A(n) = cN+o\left(\frac{N^{1/4}}{(\log N)^{1/2}}\right)\] is impossible. Vaughan proves a more general result that applies to any $h$-fold convolution, with different main terms permitted.
Is it true that $H_k(n)/n^{1/2}\to \infty$? Or even $H_k(n) > n^{1/2+c}$ for some constant $c>0$?
The answer is yes, and in fact \[H_k(n) \gg_k n^{2/3},\] proved by Alon and Erdős [AlEr85]. We sketch their proof as follows: take a random subset $A'\subset A$, including each $n\in A'$ with probability $\asymp n^{-1/3}$. The number of non-trivial additive quadruples in $A$ is $\ll n^2$ and hence only $\ll n^{2/3}$ non-trivial additive quadruples remain in $A'$. Since the size of the random subset is $\gg n^{2/3}$, all of the remaining non-trivial additive quadruples can be removed by removing at most $\lvert A'\rvert/2$ (choosing the constants suitably).
The answer is yes, proved by Sárközy and Szemerédi [SaSz94]. Ruzsa [Ru17] has constructed, for any function $w(x)\to \infty$, such a pair of sets with \[A(x)B(x)-x<w(x)\] for infinitely many $x$.
Estimate $g(n)$.
Estimate $f(n)$. In particular is it true that $f(n)\leq n^{1/2+o(1)}$?
Estimate $h(n)$.
Estimate $l(n)$. In particular, is it true that $l(n)n^{-1/2}\to \infty$? Is it true that $l(n)< n^{1-c}$ for some $c>0$?
Resolved by Alon, Bukh, and Sudakov [ABS09], who proved that for any $A\subseteq \{1,\ldots,n\}$ with $\lvert A\rvert \leq n^{1/2}$ there exists some $B$ such that $A\subseteq B+B$ and \[\lvert B\rvert \ll \frac{\log\log n}{\log n}n^{1/2}.\]
See also [333].
This strong conjecture was disproved by Alon, Ruzsa, and Solymosi [ARS20], who constructed (for arbitrarily large $n$) a set of integers $A$ with $\lvert A\rvert=n$ and a graph $G$ with $\gg n^{5/3-o(1)}$ many edges such that \[\max(\lvert A+_GA\rvert,\lvert A\cdot_G A\rvert) \ll \lvert A\rvert^{4/3+o(1)}.\] Alon, Ruzsa, and Solymosi do prove, however, that if $A$ has size $n$ and $G$ has $m$ edges then \[\max(\lvert A+_GA\rvert,\lvert A\cdot_G A\rvert) \gg m^{3/2}n^{-7/4}.\]
The analogous question with $A-A$ in place of $A+A$ is simpler, and there the maximal size is $\sim N^{1/2}$, as proved by Cilleruelo.
Is it true that $A$ is the union of a finite number of sets which contain no three-term arithmetic progression?