In [ErGr80] the generalisation where $A\subseteq (0,N]$ is a set of real numbers such that the subset sums all differ by at least $1$ is proposed, with the same conjectured bound.
Even the case $k=3$ is non-trivial, but was proved by Bloom and Sisask [BlSi20]. Much better bounds for $r_3(N)$ were subsequently proved by Kelley and Meka [KeMe23]. Green and Tao [GrTa17] have proved $r_4(N)\ll N/(\log N)^{c}$ for some small constant $c>0$. The best bound available for general $k$ is due to Gowers [Go01], \[r_k(N) \ll \frac{N}{(\log\log N)^{c_k}},\] where $c_k>0$ is a small constant depending on $k$.
Curiously, Erdős [Er83c] thought this conjecture was the 'only way to approach' the conjecture that there are arbitrarily long arithmetic progressions of prime numbers, now a theorem due to Green and Tao [GrTa08].
See also [142].
Can a lacunary set $A\subset\mathbb{N}$ (i.e. there exists some $\lambda>1$ such that $A=\{n_1<n_2<\cdots\}$ satisfies $n_{k+1}>\lambda n_k$) be an essential component?
See also [3].
Is \[\lim_{k\to \infty}\frac{f(k)}{\log W(k)}=\infty\] where $W(k)$ is the van der Waerden number?
Moreira [Mo17] has proved that in any finite colouring of $\mathbb{N}$ there exist $x,y$ such that $\{x,x+y,xy\}$ are all the same colour.
Alweiss [Al23] has proved that, in any finite colouring of $\mathbb{Q}\backslash \{0\}$ there exist arbitrarily large finite $A$ such that all sums and products of distinct elements in $A$ are the same colour. Bowen and Sabok [BoSa22] had proved this earlier for the first non-trivial case of $\lvert A\rvert=2$.
The answer is yes, which is a corollary of the density Hales-Jewett theorem, proved by Furstenberg and Katznelson [FuKa91].
The answer is yes, proved by Freiman [Fr73].
If we drop the non-empty requirement then Simonovits, Sós, and Graham [SiSoGr80] have shown that \[t\leq \binom{N}{3}+\binom{N}{2}+\binom{N}{1}+1\] and this is best possible.
This sequence is at OEIS A005282.