OPEN - $500

If $A\subseteq \{1,\ldots,N\}$ with $\lvert A\rvert=n$ is such that the subset sums $\sum_{a\in S}a$ are distinct for all $S\subseteq A$ then
\[N \gg 2^{n}.\]

Erdős called this 'perhaps my first serious problem'. The powers of $2$ show that $2^n$ would be best possible here. The trivial lower bound is $N \gg 2^{n}/n$, since all $2^n$ distinct subset sums must lie in $[0,Nn)$. Erdős and Moser [Er56] proved
\[ N\geq (\tfrac{1}{4}-o(1))\frac{2^n}{\sqrt{n}}.\]
A number of improvements of the constant have been given (see [St23] for a history), with the current record $\sqrt{2/\pi}$ first proved in unpublished work of Elkies and Gleason. Two proofs achieving this constant are provided by Dubroff, Fox, and Xu [DFX21], who in fact prove the exact bound $N\geq \binom{n}{\lfloor n/2\rfloor}$.

In [Er73] and [ErGr80] the generalisation where $A\subseteq (0,N]$ is a set of real numbers such that the subset sums all differ by at least $1$ is proposed, with the same conjectured bound. (The second proof of [DFX21] applies also to this generalisation.)

See also [350].

OPEN - $5000

If $A\subseteq \mathbb{N}$ has $\sum_{n\in A}\frac{1}{n}=\infty$ then must $A$ contain arbitrarily long arithmetic progressions?

This is essentially asking for good bounds on $r_k(N)$, the size of the largest subset of $\{1,\ldots,N\}$ without a non-trivial $k$-term arithmetic progression. For example, a bound like
\[r_k(N) \ll_k \frac{N}{(\log N)(\log\log N)^2}\]
would be sufficient.

Even the case $k=3$ is non-trivial, but was proved by Bloom and Sisask [BlSi20]. Much better bounds for $r_3(N)$ were subsequently proved by Kelley and Meka [KeMe23]. Green and Tao [GrTa17] proved $r_4(N)\ll N/(\log N)^{c}$ for some small constant $c>0$. Gowers [Go01] proved \[r_k(N) \ll \frac{N}{(\log\log N)^{c_k}},\] where $c_k>0$ is a small constant depending on $k$. The current best bounds for general $k$ are due to Leng, Sah, and Sawhney [LSS24], who show that \[r_k(N) \ll \frac{N}{\exp(-(\log\log N)^{c_k})}\] for some constant $c_k>0$ depending on $k$.

Curiously, Erdős [Er83c] thought this conjecture was the 'only way to approach' the conjecture that there are arbitrarily long arithmetic progressions of prime numbers, now a theorem due to Green and Tao [GrTa08].

OPEN - $1000

Let $h(N)$ be the maximum size of a Sidon set in $\{1,\ldots,N\}$. Is it true that, for every $\epsilon>0$,
\[h(N) = N^{1/2}+O_\epsilon(N^\epsilon)?\]

It may even be true that $h(N)=N^{1/2}+O(1)$, but Erdős remarks this is perhaps too optimistic. Erdős and Turán [ErTu41] proved an upper bound of $N^{1/2}+O(N^{1/4})$, with an alternative proof by Lindström [Li69]. Both proofs in fact give
\[h(N) \leq N^{1/2}+N^{1/4}+1.\]
Balogh, Füredi, and Roy [BFR21] improved the bound in the error term to $0.998N^{1/4}$, which has been further optimised by O'Bryant [OB22] to yield
\[h(N)\leq N^{1/2}+0.99703N^{1/4}\]
for sufficiently large $N$.

OPEN

Find the optimal constant $c>0$ such that the following holds.

For all sufficiently large $N$, if $A\sqcup B=\{1,\ldots,2N\}$ is a partition into two equal parts, so that $\lvert A\rvert=\lvert B\rvert=N$, then there is some $x$ such that the number of solutions to $a-b=x$ with $a\in A$ and $b\in B$ is at least $cN$.

The minimum overlap problem. The example (with $N$ even) $A=\{N/2+1,\ldots,3N/2\}$ shows that $c\leq 1/2$ (indeed, Erdős initially conjectured that $c=1/2$). The lower bound of $c\geq 1/4$ is trivial, and Scherk improved this to $1-1/\sqrt{2}=0.29\cdots$. The current records are
\[0.379005 < c < 0.380926\cdots,\]
the lower bound due to White [Wh22] and the upper bound due to Haugland [Ha16].

SOLVED

We say that $A\subset \mathbb{N}$ is an essential component if $d_s(A+B)>d_s(B)$ for every $B\subset \mathbb{N}$ with $0<d_s(B)<1$ where $d_s$ is the Schnirelmann density.

Can a lacunary set $A\subset\mathbb{N}$ be an essential component?

The answer is no by Ruzsa [Ru87], who proved that if $A$ is an essential component then there exists some constant $c>0$ such that $\lvert A\cap \{1,\ldots,N\}\rvert \geq (\log N)^{1+c}$ for all large $N$.

OPEN - $50

Is there an infinite Sidon set $A\subset \mathbb{N}$ such that
\[\lvert A\cap \{1\ldots,N\}\rvert \gg_\epsilon N^{1/2-\epsilon}\]
for all $\epsilon>0$?

The trivial greedy construction achieves $\gg N^{1/3}$. The current best bound of $\gg N^{\sqrt{2}-1+o(1)}$ is due to Ruzsa [Ru98]. (Erdős [Er73] had offered \$25 for any construction which achieves $N^{c}$ for some $c>1/3$.) Erdős proved that for every infinite Sidon set $A$ we have
\[\liminf \frac{\lvert A\cap \{1,\ldots,N\}\rvert}{N^{1/2}}=0,\]
and also that there is a set $A\subset \mathbb{N}$ with $\lvert A\cap \{1\ldots,N\}\rvert \gg_\epsilon N^{1/2-\epsilon}$ such that $1_A\ast 1_A(n)=O(1)$.

OPEN - $500

Let $A\subset\mathbb{N}$ be an infinite set such that the triple sums $a+b+c$ are all distinct for $a,b,c\in A$ (aside from the trivial coincidences). Is it true that
\[\liminf \frac{\lvert A\cap \{1,\ldots,N\}\rvert}{N^{1/3}}=0?\]

Erdős proved that if the pairwise sums $a+b$ are all distinct aside from the trivial coincidences then
\[\liminf \frac{\lvert A\cap \{1,\ldots,N\}\rvert}{N^{1/2}}=0.\]

OPEN - $100

If $A,B\subset \{1,\ldots,N\}$ are two Sidon sets such that $(A-A)\cap(B-B)=\{0\}$ then is it true that
\[ \binom{\lvert A\rvert}{2}+\binom{\lvert B\rvert}{2}\leq\binom{f(N)}{2}+O(1),\]
where $f(N)$ is the maximum possible size of a Sidon set in $\{1,\ldots,N\}$? If $\lvert A\rvert=\lvert B\rvert$ then can this bound be improved to
\[\binom{\lvert A\rvert}{2}+\binom{\lvert B\rvert}{2}\leq (1-c)\binom{f(N)}{2}\]
for some constant $c>0$?

OPEN - $250

Let $A$ be a finite set of integers. Is it true that for every $\epsilon>0$
\[\max( \lvert A+A\rvert,\lvert AA\rvert)\gg_\epsilon \lvert A\rvert^{2-\epsilon}?\]

The sum-product problem. Erdős and Szemerédi [ErSz83] proved a lower bound of $\lvert A\rvert^{1+c}$ for some constant $c>0$, and an upper bound of $o(\lvert A\rvert^2)$. The lower bound has been improved a number of times. The current record is
\[\max( \lvert A+A\rvert,\lvert AA\rvert)\gg\lvert A\rvert^{\frac{1558}{1167}-o(1)}\]
due to Rudnev and Stevens [RuSt22] (note $1558/1167=1.33504\cdots$).

There is likely nothing special about the integers in this question, and indeed Erdős and Szemerédi also ask a similar question about finite sets of real or complex numbers. The current best bound for sets of reals is the same bound of Rudnev and Stevens above. The best bound for complex numbers is \[\max( \lvert A+A\rvert,\lvert AA\rvert)\gg\lvert A\rvert^{\frac{5}{4}},\] due to Solymosi [So05].

One can in general ask this question in any setting where addition and multiplication are defined (once one avoids any trivial obstructions such as zero divisors or finite subfields). For example, it makes sense for subsets of finite fields. The current record is that if $A\subseteq \mathbb{F}_p$ with $\lvert A\rvert <p^{5/8}$ then \[\max( \lvert A+A\rvert,\lvert AA\rvert)\gg\lvert A\rvert^{\frac{11}{9}+o(1)},\] due to Rudnev, Shakan, and Shkredov [RSS20].

There is also a natural generalisation to higher-fold sum and product sets. For example, it is reasonable to conjecture (although I cannot find a record of Erdős himself actually doing so) that for any $m\geq 2$ and finite set of integers (or reals, etc) $A$ that \[\max( \lvert mA\rvert,\lvert A^m\rvert)\gg \lvert A\rvert^{m-o(1)}.\] See [53] for more on this generalisation.

SOLVED

Let $A$ be a finite set of integers. Is it true that, for every $k$, if $\lvert A\rvert$ is sufficiently large depending on $k$, then there are least $\lvert A\rvert^k$ many integers which are either the sum or product of distinct elements of $A$?

SOLVED

Any $A\subseteq \mathbb{N}$ of positive upper density contains a sumset $B+C$ where both $B$ and $C$ are infinite.

The Erdős sumset conjecture. Proved by Moreira, Richter, and Robertson [MRR19].

OPEN

Let the van der Waerden number $W(k)$ be such that whenever $N\geq W(k)$ and $\{1,\ldots,N\}$ is $2$-coloured there must exist a monochromatic $k$-term arithmetic progression. Improve the bounds for $W(k)$ - for example, prove that $W(k)^{1/k}\to \infty$.

SOLVED - $1000

Let $r_k(N)$ be the size of the largest subset of $\{1,\ldots,N\}$ which does not contain a non-trivial $k$-term arithmetic progression. Prove that $r_k(N)=o(N)$.

Proved by Szemerédi [Sz74]. The best known bounds are due to Kelley and Meka [KeMe23] for $k=3$, Green and Tao [GrTa17] for $k=4$, and Leng, Sah, and Sawhney [LSS24] for $k\geq 5$.

See also [3].

SOLVED - $500

Let $r_3(N)$ be the size of the largest subset of $\{1,\ldots,N\}$ which does not contain a non-trivial $3$-term arithmetic progression. Prove that $r_3(N)\ll N/(\log N)^C$ for every $C>0$.

OPEN - $1000

Let $r_k(N)$ be the largest possible size of a subset of $\{1,\ldots,N\}$ that does not contain any non-trivial $k$-term arithmetic progression. Prove an asymptotic formula for $r_k(N)$.

The best known bounds are due to Kelley and Meka [KeMe23] for $k=3$, Green and Tao [GrTa17] for $k=4$, and Leng, Sah, and Sawhney [LSS24] for $k\geq 5$. Erdős remarked this is 'probably unattackable at present'. Given that Erdős elsewhere offered \$5000 just for (essentially) showing that $r_k(N)=o_k(N/\log N)$, the value of this prize seems odd.

OPEN

Let $h(N)$ be the smallest $k$ such that $\{1,\ldots,N\}$ can be coloured with $k$ colours so that every four-term arithmetic progression must contain at least three distinct colours. Estimate $h(N)$.

Investigated by Erdős and Freud. This has been discussed on MathOverflow, where LeechLattice shows
\[h(N) \ll N^{2/3}.\]
The observation of Zachary Hunter in that question coupled with the bounds of Kelley-Meka [KeMe23] imply that
\[h(N) \gg \exp(c(\log N)^{1/12})\]
for some $c>0$.

OPEN

Let $F(N)$ be the size of the largest subset of $\{1,\ldots,N\}$ which does not contain any set of the form $\{n,2n,3n\}$. What is
\[ \lim_{N\to \infty}\frac{F(N)}{N}?\]
Is this limit irrational?

This limit was proved to exist by Graham, Spencer, and Witsenhausen [GrSpWi77]. Similar questions can be asked for the density or upper density of infinite sets without such configurations.

OPEN

Let $k\geq 3$ and $f(k)$ be the supremum of $\sum_{n\in A}\frac{1}{n}$ as $A$ ranges over all sets of positive integers which do not contain a $k$-term arithmetic progression. Estimate $f(k)$.

Is \[\lim_{k\to \infty}\frac{f(k)}{\log W(k)}=\infty\] where $W(k)$ is the van der Waerden number?

Gerver [Ge77] has proved
\[f(k) \geq (1+o(1))k\log k.\]
It is trivial that
\[\frac{f(k)}{\log W(k)}\geq \frac{1}{2},\]
but improving the right-hand side to any constant $>1/2$ is open.

OPEN

Let $F(N)$ be the smallest possible size of $A\subset \{0,1,\ldots,N\}$ such that $\{0,1,\ldots,N\}\subset A-A$. Find the value of
\[\lim_{N\to \infty}\frac{F(N)}{N^{1/2}}.\]

The Sparse Ruler problem. Rédei asked whether this limit exists, which was proved by Erdős and Gál [ErGa48]. Bounds on the limit were improved by Leech [Le56]. The limit is known to be in the interval $[1.56,\sqrt{3}]$. The lower bound is due to Leech [Le56], the upper bound is due to Wichmann [Wi63]. Computational evidence by Pegg [Pe20] suggests that the upper bound is the truth. A similar question can be asked without the restriction $A\subset \{0,1,\ldots,N\}$.

SOLVED

Is it true that for every $\epsilon>0$ and integer $t\geq 1$, if $N$ is sufficiently large and $A$ is a subset of $[t]^N$ of size at least $\epsilon t^N$ then $A$ must contain a combinatorial line $P$ (a set $P=\{p_1,\ldots,p_t\}$ where for each coordinate $1\leq j\leq t$ the $j$th coordinate of $p_i$ is either $i$ or constant).

OPEN

Is it true that in any finite colouring of $\mathbb{N}$ there exist arbitrarily large finite $A$ such that all sums and products of distinct elements in $A$ are the same colour?

First asked by Hindman. Hindman [Hi80] has proved this is false (with 7 colours) if we ask for an infinite $A$.

Moreira [Mo17] has proved that in any finite colouring of $\mathbb{N}$ there exist $x,y$ such that $\{x,x+y,xy\}$ are all the same colour.

Alweiss [Al23] has proved that, in any finite colouring of $\mathbb{Q}\backslash \{0\}$ there exist arbitrarily large finite $A$ such that all sums and products of distinct elements in $A$ are the same colour. Bowen and Sabok [BoSa22] had proved this earlier for the first non-trivial case of $\lvert A\rvert=2$.

OPEN

Let $N(k,\ell)$ be the minimal $N$ such that for any $f:\{1,\ldots,N\}\to\{-1,1\}$ there must exist a $k$-term arithmetic progression $P$ such that
\[ \left\lvert \sum_{n\in P}f(n)\right\rvert> \ell.\]
Find good upper bounds for $N(k,\ell)$. Is it true that for any $c>0$ there exists some $C>1$ such that
\[N(k,ck)\leq C^k?\]
What about
\[N(k,1)\leq C^k\]
or
\[N(k,\sqrt{k})\leq C^k?\]

No decent bound is known even for $N(k,1)$. Probabilistic methods imply that, for every fixed constant $c>0$, we have $N(k,ck)>C_c^k$ for some $C_c>1$.

SOLVED

Let $1\leq k<\ell$ be integers and define $F_k(N,\ell)$ to be minimal such that every set $A\subset \mathbb{N}$ of size $N$ which contains at least $F_k(N,\ell)$ many $k$-term arithmetic progressions must contain an $\ell$-term arithmetic progression. Find good upper bounds for $F_k(N,\ell)$. Is it true that
\[F_3(N,4)=o(N^2)?\]
Is it true that for every $\ell>3$
\[\lim_{N\to \infty}\frac{\log F_3(N,\ell)}{\log N}=2?\]

Erdős remarks the upper bound $o(N^2)$ is certainly false for $\ell >\epsilon \log N$. The answer is yes: Fox and Pohoata [FoPo20] have shown that, for all fixed $1\leq k<\ell$,
\[F_k(N,\ell)=N^{2-o(1)}\]
and in fact
\[F_{k}(N,\ell) \leq \frac{N^2}{(\log\log N)^{C_\ell}}\]
where $C_\ell>0$ is some constant.

SOLVED

Let $f_3(n)$ be the maximal size of a subset of $\{0,1,2\}^n$ which contains no three points on a line. Is it true that $f_3(n)=o(3^n)$?

Originally considered by Moser. It is trivial that $f_3(n)\geq R_3(3^n)$, the maximal size of a subset of $\{1,\ldots,3^n\}$ without a three-term arithmetic progression. Moser showed that
\[f_3(n) \gg \frac{3^n}{\sqrt{n}}.\]

The answer is yes, which is a corollary of the density Hales-Jewett theorem, proved by Furstenberg and Katznelson [FuKa91].

OPEN

Let $F(N)$ be the maximal size of $A\subseteq \{1,\ldots,N\}$ which is 'non-averaging', so that no $n\in A$ is the arithmetic mean of at least two elements in $A$. What is the order of growth of $F(N)$?

Originally due to Straus. It is known that
\[N^{1/4}\ll F(N) \ll N^{\sqrt{2}-1+o(1)}.\]
The lower bound is due to Bosznay [Bo89] and the upper bound to Conlon, Fox, and Pham [CFP23] (improving on earlier bound due to Erdős and Sárközy [ErSa90] of $\ll (N\log N)^{1/2}$).

OPEN

Find the best function $f(d)$ such that, in any 2-colouring of the integers, at least one colour class contains an arithmetic progression with common difference $d$ of length $f(d)$ for infinitely many $d$.

Originally asked by Cohen. Erdős observed that colouring according to whether $\{ \sqrt{2}n\}<1/2$ or not implies $f(d) \ll d$ (using the fact that $\|\sqrt{2}q\| \gg 1/q$ for all $q$, where $\|x\|$ is the distance to the nearest integer). Beck [Be80] has improved this using the probabilistic method, constructing a colouring that shows $f(d)\leq (1+o(1))\log_2 d$. Van der Waerden's theorem implies $f(d)\to \infty$ is necessary.

OPEN

Let $H(k)$ be the smallest $N$ such that in any finite colouring of $\{1,\ldots,N\}$ (into any number of colours) there is always either a monochromatic $k$-term arithmetic progression or a rainbow arithmetic progression (i.e. all elements are different colours). Estimate $H(k)$. Is it true that
\[H(k)^{1/k}/k \to \infty\]
as $k\to\infty$?

This type of problem belongs to 'canonical' Ramsey theory. The existence of $H(k)$ follows from Szemerédi's theorem, and it is easy to show that $H(k)^{1/k}\to\infty$.

OPEN

Let $G_k(N)$ be such that any set of $N$ integers contains a subset of size at least $G_k(N)$ which does not contain a $k$-term arithmetic progression. Determine the size of $G_k(N)$. How does it relate to $R_k(N)$, the size of the largest subset of $\{1,\ldots,N\}$ without a $k$-term arithmetic progression? Is it true that
\[\lim_{N\to \infty}\frac{R_3(N)}{G_3(N)}=1?\]

First asked and investigated by Riddell [Ri69]. It is trivial that $G_k(N)\leq R_k(N)$, and it is possible that $G_k(N) <R_k(N)$ (for example with $k=3$ and $N=14$). Komlós, Sulyok, and Szemerédi [KSS75] have shown that $R_k(N) \ll_k G_k(N)$.

OPEN - $100

Let $f(N)$ be the maximum size of $A\subseteq \{1,\ldots,N\}$ such that the sums $a+b+c$ with $a,b,c\in A$ are all distinct (aside from the trivial incidences). Is it true that
\[ f(N)\sim N^{1/3}?\]

Originally asked to Erdős by Bose. Bose and Chowla [BoCh62] provided a construction proving one half of this, namely
\[(1+o(1))N^{1/3}\leq f(N).\]
The best upper bound known to date is due to Green [Gr01],
\[f(N) \leq ((7/2)^{1/3}+o(1))N^{1/3}\]
(note that $(7/2)^{1/3}\approx 1.519\cdots$).

SOLVED

Let $A\subseteq \mathbb{N}$ be an infinite set such that $\lvert A\cap \{1,\ldots,N\}\rvert=o(N)$. Is it true that
\[\limsup_{N\to \infty}\frac{\lvert (A+A)\cap \{1,\ldots,N\}\rvert}{\lvert A\cap \{1,\ldots,N\}\rvert}\geq 3?\]

Erdős writes it is 'easy to see' that this holds with $3$ replaced by $2$, and that $3$ would be best possible here. We do not see an easy argument that this holds with $2$, but this follows e.g. from the main result of Mann [Ma60].

The answer is yes, proved by Freiman [Fr73].

OPEN

For any $n$, let $A(n)=\{0<n<\cdots\}$ be the infinite sequence with $a_0=0$ and $a_1=n$ and $a_{k+1}$ is the least integer such that there is no three-term arithmetic progression in $\{a_0,\ldots,a_{k+1}\}$. Can the $a_k$ be explicitly determined? How fast do they grow?

It is easy to see that $A(1)$ is the set of integers which have no 2 in their base 3 expansion. Odlyzko and Stanley have found similar characterisations are known for $A(3^k)$ and $A(2\cdot 3^k)$ for any $k\geq 0$, see [OdSt78]. There are no conjectures for the general case.

OPEN

Let $N\geq 1$. What is the largest $t$ such that there are $A_1,\ldots,A_t\subseteq \{1,\ldots,N\}$ with $A_i\cap A_j$ a non-empty arithmetic progression for all $i\neq j$?

Simonovits and Sós [SiSo81] have shown that $t\ll N^2$. It is possible that the maximal $t$ is achieved when we take the $A_i$ to be all arithmetic progressions in $\{1,\ldots,N\}$ containing some fixed element.

If we drop the non-empty requirement then Simonovits, Sós, and Graham [SiSoGr80] have shown that \[t\leq \binom{N}{3}+\binom{N}{2}+\binom{N}{1}+1\] and this is best possible.

SOLVED

Suppose $A\subseteq\mathbb{N}$ and $C>0$ is such that $1_A\ast 1_A(n)\leq C$ for all $n\in\mathbb{N}$. Can $A$ be partitioned into $t$ many subsets $A_1,\ldots,A_t$ (where $t=t(C)$ depends only on $C$) such that $1_{A_i}\ast 1_{A_i}(n)<C$ for all $1\leq i\leq t$ and $n\in \mathbb{N}$?

Asked by Erdős and Newman. Nešetřil and Rödl have shown the answer is no for all $C$ (source is cited as 'personal communication' in [ErGr80]). Erdős had previously shown the answer is no for $C=3,4$ and infinitely many other values of $C$.

OPEN

Let $A,B\subseteq \mathbb{N}$ such that for all large $N$
\[\lvert A\cap \{1,\ldots,N\}\rvert \gg N^{1/2}\]
and
\[\lvert B\cap \{1,\ldots,N\}\rvert \gg N^{1/2}.\]
Is it true that there are infinitely many solutions to $a_1-a_2=b_1-b_2\neq 0$ with $a_1,a_2\in A$ and $b_1,b_2\in B$?

OPEN

Let $d(A)$ denote the density of $A\subseteq \mathbb{N}$. Characterise those $A,B\subseteq \mathbb{N}$ with positive density such that
\[d(A+B)=d(A)+d(B).\]

One way this can happen is if there exists $\theta>0$ such that
\[A=\{ n>0 : \{ n\theta\} \in X_A\}\textrm{ and }B=\{ n>0 : \{n\theta\} \in X_B\}\]
where $\{x\}$ denotes the fractional part of $x$ and $X_A,X_B\subseteq \mathbb{R}/\mathbb{Z}$ are such that $\mu(X_A+X_B)=\mu(X_A)+\mu(X_B)$. Are all possible $A$ and $B$ generated in a similar way (using other groups)?

SOLVED

Let $A\subseteq \mathbb{N}$ be an additive basis (of any finite order) such that $\lvert A\cap \{1,\ldots,N\}\rvert=o(N)$. Is it true that
\[\lim_{N\to \infty}\frac{\lvert (A+A)\cap \{1,\ldots,N\}\rvert}{\lvert A\cap \{1,\ldots,N\}\rvert}=\infty?\]

The answer is no, and a counterexample was provided by Turjányi [Tu84]. This was generalised (to the replacement of $A+A$ by the $h$-fold sumset $hA$ for any $h\geq 2$) by Ruzsa and Turjányi [RT85]. Ruzsa and Turjányi do prove (under the same hypotheses) that
\[\lim_{N\to \infty}\frac{\lvert (A+A+A)\cap \{1,\ldots,3N\}\rvert}{\lvert A\cap \{1,\ldots,N\}\rvert}=\infty,\]
and conjecture that the same should be true with $(A+A)\cap \{1,\ldots,2N\}$ in the numerator.

OPEN

Let $A=\{1,2,4,8,13,21,31,45,66,81,97,\ldots\}$ be the greedy Sidon sequence: we begin with $1$ and iteratively include the next smallest integer that preserves the Sidon property. What is the order of growth of $A$? Is it true that
\[\lvert A\cap \{1,\ldots,N\}\rvert \gg N^{1/2-\epsilon}\]
for all $\epsilon>0$ and large $N$?

Erdős and Graham [ErGr80] also ask about the difference set $A-A$, whether this has positive density, and whether this contains $22$.

This sequence is at OEIS A005282.

SOLVED

If $A\subset\mathbb{N}$ is a finite set of integers all of whose subset sums are distinct then
\[\sum_{n\in A}\frac{1}{n}<2.\]

OPEN

Let $p$ be a prime. Given any finite set $A\subseteq \mathbb{F}_p\backslash \{0\}$, is there always a rearrangement $A=\{a_1,\ldots,a_t\}$ such that all partial sums $\sum_{1\leq k\leq m}a_{k}$ are distinct, for all $1\leq m\leq t$?

A problem of Graham.

OPEN

Prove that there exists an absolute constant $c>0$ such that, whenever $\{1,\ldots,N\}$ is $k$-coloured (and $N$ is large enough depending on $k$) then there are at least $cN$ many integers in $\{1,\ldots,N\}$ which are representable as a monochromatic sum (that is, $a+b$ where $a,b\in \{1,\ldots,N\}$ are in the same colour class).

A conjecture of Roth.

OPEN

Let $A\subset \mathbb{C}$ be a finite set, for any $k\geq 1$ let
\[A_k = \{ z_1\cdots z_k : z_i\in A\textrm{ distinct}\}.\]
For $k>2$ does the set $A_k$ uniquely determine the set $A$?

A problem of Selfridge and Straus [SeSt58], who prove that this is true if $k=2$ and $\lvert A\rvert \neq 2^l$ (for $l\geq 0$).