Logo
All Random Solved Random Open
10 solved out of 28 shown (show only solved or open)
OPEN - $5000
If $A\subseteq \mathbb{N}$ has $\sum_{n\in A}\frac{1}{n}=\infty$ then must $A$ contain arbitrarily long arithmetic progressions?
This is essentially asking for good bounds on $r_k(N)$, the size of the largest subset of $\{1,\ldots,N\}$ without a non-trivial $k$-term arithmetic progression. For example, a bound like \[r_k(N) \ll_k \frac{N}{(\log N)(\log\log N)^2}\] would be sufficient.

Even the case $k=3$ is non-trivial, but was proved by Bloom and Sisask [BlSi20]. Much better bounds for $r_3(N)$ were subsequently proved by Kelley and Meka [KeMe23]. Green and Tao [GrTa17] proved $r_4(N)\ll N/(\log N)^{c}$ for some small constant $c>0$. Gowers [Go01] proved \[r_k(N) \ll \frac{N}{(\log\log N)^{c_k}},\] where $c_k>0$ is a small constant depending on $k$. The current best bounds for general $k$ are due to Leng, Sah, and Sawhney [LSS24], who show that \[r_k(N) \ll \frac{N}{\exp((\log\log N)^{c_k})}\] for some constant $c_k>0$ depending on $k$.

Curiously, Erdős [Er83c] thought this conjecture was the 'only way to approach' the conjecture that there are arbitrarily long arithmetic progressions of prime numbers, now a theorem due to Green and Tao [GrTa08] (see [219]).

In [Er81] Erdős makes the stronger conjecture that \[r_k(N) \ll_C\frac{N}{(\log N)^C}\] for every $C>0$ (now known for $k=3$ due to Kelley and Meka [KeMe23]) - see [140].

See also [139] and [142].

SOLVED - $500
If $f:\mathbb{N}\to \{-1,+1\}$ then is it true that for every $C>0$ there exist $d,m\geq 1$ such that \[\left\lvert \sum_{1\leq k\leq m}f(kd)\right\rvert > C?\]
The Erdős discrepancy problem. This is true, and was proved by Tao [Ta16], who also proved the more general case when $f$ takes values on the unit sphere.

In [Er81] it is further conjectured that \[\max_{md\leq x}\left\lvert \sum_{1\leq k\leq m}f(kd)\right\rvert \gg \log x.\]

In [Er85c] Erdős also asks about the special case when $f$ is multiplicative.

OPEN
Let the van der Waerden number $W(k)$ be such that whenever $N\geq W(k)$ and $\{1,\ldots,N\}$ is $2$-coloured there must exist a monochromatic $k$-term arithmetic progression. Improve the bounds for $W(k)$ - for example, prove that $W(k)^{1/k}\to \infty$.
When $p$ is prime Berlekamp [Be68] has proved $W(p+1)\geq p2^p$. Gowers [Go01] has proved \[W(k) \leq 2^{2^{2^{2^{2^{k+9}}}}}.\]

In [Er81] Erdős further asks whether $W(k+1)/W(k)\to \infty$, or $W(k+1)-W(k)\to \infty$.

OPEN
Let $F(N)$ be the size of the largest subset of $\{1,\ldots,N\}$ which does not contain any set of the form $\{n,2n,3n\}$. What is \[ \lim_{N\to \infty}\frac{F(N)}{N}?\] Is this limit irrational?
This limit was proved to exist by Graham, Spencer, and Witsenhausen [GrSpWi77]. Similar questions can be asked for the density or upper density of infinite sets without such configurations.
Additional thanks to: Jonathan Chapman
OPEN
Let $k\geq 3$ and $f(k)$ be the supremum of $\sum_{n\in A}\frac{1}{n}$ as $A$ ranges over all sets of positive integers which do not contain a $k$-term arithmetic progression. Estimate $f(k)$.

Is \[\lim_{k\to \infty}\frac{f(k)}{\log W(k)}=\infty\] where $W(k)$ is the van der Waerden number?

Gerver [Ge77] has proved \[f(k) \geq (1+o(1))k\log k.\] It is trivial that \[\frac{f(k)}{\log W(k)}\geq \frac{1}{2},\] but improving the right-hand side to any constant $>1/2$ is open.
SOLVED
Is it true that for every $\epsilon>0$ and integer $t\geq 1$, if $N$ is sufficiently large and $A$ is a subset of $[t]^N$ of size at least $\epsilon t^N$ then $A$ must contain a combinatorial line $P$ (a set $P=\{p_1,\ldots,p_t\}$ where for each coordinate $1\leq j\leq t$ the $j$th coordinate of $p_i$ is either $i$ or constant).
The 'density Hales-Jewett' problem. This was proved by Furstenberg and Katznelson [FuKa91]. A new elementary proof, which gives quantitative bounds, was proved by the Polymath project [Po09].
OPEN
In any $2$-colouring of $\mathbb{R}^2$, for all but at most one triangle $T$, there is a monochromatic congruent copy of $T$.
For some colourings a single equilateral triangle has to be excluded, considering the colouring by alternating strips. Shader [Sh76] has proved this is true if we just consider a single right-angled triangle.
OPEN
A finite set $A\subset \mathbb{R}^n$ is called Ramsey if, for any $k\geq 1$, there exists some $d=d(A,k)$ such that in any $k$-colouring of $\mathbb{R}^d$ there exists a monochromatic copy of $A$. Characterise the Ramsey sets in $\mathbb{R}^n$.
Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus [EGMRSS73] proved that every Ramsey set is 'spherical': it lies on the surface of some sphere. Graham has conjectured that every spherical set is Ramsey. Leader, Russell, and Walters [LRW12] have alternatively conjectured that a set is Ramsey if and only if it is 'subtransitive': it can be embedded in some higher-dimensional set on which rotations act transitively.

Sets known to be Ramsey include vertices of $k$-dimensional rectangles [EGMRSS73], non-degenerate simplices [FrRo90], trapezoids [Kr92], and regular polygons/polyhedra [Kr91].

OPEN
Let $N(k,\ell)$ be the minimal $N$ such that for any $f:\{1,\ldots,N\}\to\{-1,1\}$ there must exist a $k$-term arithmetic progression $P$ such that \[ \left\lvert \sum_{n\in P}f(n)\right\rvert\geq \ell.\] Find good upper bounds for $N(k,\ell)$. Is it true that for any $c>0$ there exists some $C>1$ such that \[N(k,ck)\leq C^k?\] What about \[N(k,2)\leq C^k\] or \[N(k,\sqrt{k})\leq C^k?\]
Spencer [Sp73] has proved that if $k=2^tm$ with $m$ odd then \[N(k,1)=2^t(k-1)+1.\] Erdős and Graham write that 'no decent bound' is known even for $N(k,2)$. Probabilistic methods imply that, for every fixed constant $c>0$, we have $N(k,ck)>C_c^k$ for some $C_c>1$.
OPEN
Find the smallest $h(d)$ such that the following holds. There exists a function $f:\mathbb{N}\to\{-1,1\}$ such that, for every $d\geq 1$, \[\max_{P_d}\left\lvert \sum_{n\in P_d}f(n)\right\rvert\leq h(d),\] where $P_d$ ranges over all finite arithmetic progressions with common difference $d$.
Cantor, Erdős, Schreiber, and Straus [Er66] proved that $h(d)\ll d!$ is possible. Van der Waerden's theorem implies that $h(d)\to \infty$. Beck [Be17] has shown that $h(d) \leq d^{8+\epsilon}$ is possible for every $\epsilon>0$. Roth's famous discrepancy lower bound [Ro64] implies that $h(d)\gg d^{1/2}$.
Additional thanks to: Zach Hunter
SOLVED
Let $A_1,A_2,\ldots$ be an infinite collection of infinite sets of integers, say $A_i=\{a_{i1}<a_{i2}<\cdots\}$. Does there exist some $f:\mathbb{N}\to\{-1,1\}$ such that \[\max_{m, 1\leq i\leq d} \left\lvert \sum_{1\leq j\leq m} f(a_{ij})\right\rvert \ll_d 1\] for all $d\geq 1$?
Erdős remarks 'it seems certain that the answer is affirmative'. This was solved by Beck [Be81]. Recently Beck [Be17] proved that one can replace $\ll_d 1$ with $\ll d^{4+\epsilon}$ for any $\epsilon>0$.
Additional thanks to: Zach Hunter
SOLVED
Let $1\leq k<\ell$ be integers and define $F_k(N,\ell)$ to be minimal such that every set $A\subset \mathbb{N}$ of size $N$ which contains at least $F_k(N,\ell)$ many $k$-term arithmetic progressions must contain an $\ell$-term arithmetic progression. Find good upper bounds for $F_k(N,\ell)$. Is it true that \[F_3(N,4)=o(N^2)?\] Is it true that for every $\ell>3$ \[\lim_{N\to \infty}\frac{\log F_3(N,\ell)}{\log N}=2?\]
Erdős remarks the upper bound $o(N^2)$ is certainly false for $\ell >\epsilon \log N$. The answer is yes: Fox and Pohoata [FoPo20] have shown that, for all fixed $1\leq k<\ell$, \[F_k(N,\ell)=N^{2-o(1)}\] and in fact \[F_{k}(N,\ell) \leq \frac{N^2}{(\log\log N)^{C_\ell}}\] where $C_\ell>0$ is some constant. In fact, they show that, if $r_\ell(N)$ is the size of the largest subset of $\{1,\ldots,N\}$ without an $\ell$-term arithmetic progression then there exists some absolute constant $c>0$ such that \[\left(c \frac{r_\ell(N)}{N}\right)^{2(k-1)}N^2 < F_k(N,\ell) <\left(\frac{r_\ell(N)}{N}\right)^{O(1)}N^2.\] Any improved bounds for Szemerédi's theorem (see [139]) therefore yield improved bounds for $F_k(N,\ell)$. In particular, the bounds of Leng, Sah, and Sawhney [LSS24] imply \[F_k(N,\ell) \leq \frac{N^2}{\exp((\log\log N)^{c_\ell})}\] for some constant $c_\ell>0$.
Additional thanks to: Zach Hunter
OPEN
Let $F(N)$ be the maximal size of $A\subseteq \{1,\ldots,N\}$ which is 'non-averaging', so that no $n\in A$ is the arithmetic mean of at least two elements in $A$. What is the order of growth of $F(N)$?
Originally due to Straus. It is known that \[N^{1/4}\ll F(N) \ll N^{\sqrt{2}-1+o(1)}.\] The lower bound is due to Bosznay [Bo89] and the upper bound to Conlon, Fox, and Pham [CFP23] (improving on earlier bound due to Erdős and Sárközy [ErSa90] of $\ll (N\log N)^{1/2}$).

See also [789].

Additional thanks to: Zachary Chase
OPEN
Find the best function $f(d)$ such that, in any 2-colouring of the integers, at least one colour class contains an arithmetic progression with common difference $d$ of length $f(d)$ for infinitely many $d$.
Originally asked by Cohen. Erdős observed that colouring according to whether $\{ \sqrt{2}n\}<1/2$ or not implies $f(d) \ll d$ (using the fact that $\|\sqrt{2}q\| \gg 1/q$ for all $q$, where $\|x\|$ is the distance to the nearest integer). Beck [Be80] has improved this using the probabilistic method, constructing a colouring that shows $f(d)\leq (1+o(1))\log_2 d$. Van der Waerden's theorem implies $f(d)\to \infty$ is necessary.
Additional thanks to: Zach Hunter
OPEN
What is the smallest $k$ such that $\mathbb{R}^2$ can be red/blue coloured with no pair of red points unit distance apart, and no $k$-term arithmetic progression of blue points with distance $1$?
Juhász [Ju79] has shown that $k\geq 5$. Erdős and Graham claim that $k\leq 10000000$ ('more or less'), but give no proof.

Erdős and Graham asked this with just any $k$-term arithmetic progression in blue (not necessarily with distance $1$), but Alon has pointed out that in fact no such $k$ exists: in any red/blue colouring of the integer points on a line either there are two red points distance $1$ apart, or else the set of blue points and the same set shifted by $1$ cover all integers, and hence by van der Waerden's theorem there are arbitrarily long blue arithmetic progressions.

It seems most likely, from context, that Erdős and Graham intended to restrict the blue arithmetic progression to have distance $1$ (although they do not write this restriction in their papers).

Additional thanks to: Noga Alon
SOLVED
If $\mathbb{R}^2$ is finitely coloured then must there exist some colour class which contains the vertices of a rectangle of every area?
Graham [Gr80] has shown that this is true if we replace rectangle by right-angled triangle. The same question can be asked for parallelograms. It is not true for rhombuses.

This is false; Kovač [Ko23] provides an explicit (and elegantly simple) colouring using 25 colours such that no colour class contains the vertices of a rectangle of area $1$. The question for parallelograms remains open.

Additional thanks to: Ryan Alweiss, Vjekoslav Kovac
OPEN
Let $H(k)$ be the smallest $N$ such that in any finite colouring of $\{1,\ldots,N\}$ (into any number of colours) there is always either a monochromatic $k$-term arithmetic progression or a rainbow arithmetic progression (i.e. all elements are different colours). Estimate $H(k)$. Is it true that \[H(k)^{1/k}/k \to \infty\] as $k\to\infty$?
This type of problem belongs to 'canonical' Ramsey theory. The existence of $H(k)$ follows from Szemerédi's theorem, and it is easy to show that $H(k)^{1/k}\to\infty$.
SOLVED
Let $C>0$ be arbitrary. Is it true that, if $n$ is sufficiently large depending on $C$, then in any $2$-colouring of $\binom{\{2,\ldots,n\}}{2}$ there exists some $X\subset \{2,\ldots,n\}$ such that $\binom{X}{2}$ is monochromatic and \[\sum_{x\in X}\frac{1}{\log x}\geq C?\]
The answer is yes, which was proved by Rödl [Ro03].

In the same article Rödl also proved a lower bound for this problem, constructing, for all $n$, a $2$-colouring of $\binom{\{2,\ldots,n\}}{2}$ such that if $X\subseteq \{2,\ldots,n\}$ is such that $\binom{X}{2}$ is monochromatic then \[\sum_{x\in X}\frac{1}{\log x}\ll \log\log\log n.\]

This bound is best possible, as proved by Conlon, Fox, and Sudakov [CFS13], who proved that, if $n$ is sufficiently large, then in any $2$-colouring of $\binom{\{2,\ldots,n\}}{2}$ there exists some $X\subset \{2,\ldots,n\}$ such that $\binom{X}{2}$ is monochromatic and \[\sum_{x\in X}\frac{1}{\log x}\geq 2^{-8}\log\log\log n.\]

Additional thanks to: Mehtaab Sawhney
SOLVED
Let $A=\{a_1,a_2,\ldots\}\subset \mathbb{R}^d$ be an infinite sequence such that $a_{i+1}-a_i$ is a positive unit vector (i.e. is of the form $(0,0,\ldots,1,0,\ldots,0)$). For which $d$ must $A$ contain a three-term arithmetic progression?
This is true for $d\leq 3$ and false for $d\geq 4$.

This problem is equivalent to one on 'abelian squares' (see [231]). In particular $A$ can be interpreted as an infinite string over an alphabet with $d$ letters (each letter describining which of the $d$ possible steps is taken at each point). An abelian square in a string $s$ is a pair of consecutive blocks $x$ and $y$ appearing in $s$ such that $y$ is a permutation of $x$. The connection comes from the observation that $p,q,r\in A\subset \mathbb{R}^d$ form a three-term arithmetic progression if and only if the string corresponding to the steps from $p$ to $q$ is a permutation of the string corresponding to the steps from $q$ to $r$.

This problem is therefore equivalent to asking for which $d$ there exists an infinite string over $\{1,\ldots,d\}$ with no abelian squares. It is easy to check that in fact any finite string of length $7$ over $\{1,2,3\}$ contains an abelian square.

An infinite string without abelian squares was constructed when $d=4$ by Keränen [Ke92]. We refer to a recent survey by Fici and Puzynina [FiPu23] for more background and related results, and a blog post by Renan for an entertaining and educational discussion.

Additional thanks to: Boris Alexeev and Dustin Mixon
OPEN
Let $S\subseteq \mathbb{Z}^3$ be a finite set and let $A=\{a_1,a_2,\ldots,\}\subset \mathbb{Z}^3$ be an infinite $S$-walk, so that $a_{i+1}-a_i\in S$ for all $i$. Must $A$ contain three collinear points?
Originally conjectured by Gerver and Ramsey [GeRa79], who showed that the answer is yes for $\mathbb{Z}^2$, and for $\mathbb{Z}^3$ that the largest number of collinear points can be bounded.
Additional thanks to: Terence Tao
SOLVED
Let $k\geq 3$. Must any ordering of $\mathbb{R}$ contain a monotone $k$-term arithmetic progression, that is, some $x_1<\cdots<x_k$ which forms an increasing or decreasing $k$-term arithmetic progression?
The answer is no, even for $k=3$, as shown by Ardal, Brown, and Jungić [ABJ11].

See also [195] and [196].

OPEN
What is the smallest $k$ such that in any permutation of $\mathbb{Z}$ there must exist a monotone $k$-term arithmetic progression $x_1<\cdots<x_k$?
Geneson [Ge19] proved that $k\leq 5$. Adenwalla [Ad22] proved that $k\leq 4$.

See also [194] and [196].

Additional thanks to: Boris Alexeev and Dustin Mixon
OPEN
Must every permutation of $\mathbb{N}$ contain a monotone 4-term arithmetic progression $x_1<x_2<x_3<x_4$?
Davis, Entringer, Graham, and Simmons [DEGS77] have shown that there must exist a monotone 3-term arithmetic progression and need not contain a 5-term arithmetic progression.

See also [194] and [195].

Additional thanks to: Boris Alexeev and Dustin Mixon
OPEN
Can $\mathbb{N}$ be partitioned into two sets, each of which can be permuted to avoid monotone 3-term arithmetic progressions?
If three sets are allowed then this is possible.
Additional thanks to: Boris Alexeev and Dustin Mixon
SOLVED
If $A\subset \mathbb{N}$ is a Sidon set then must the complement of $A$ contain an infinite arithmetic progression?
The answer is yes, as shown by Baumgartner [Ba75].
SOLVED
If $A\subset \mathbb{R}$ does not contain a 3-term arithmetic progression then must $\mathbb{R}\backslash A$ contain an infinite arithmetic progression?
The answer is no, as shown by Baumgartner [Ba75] (whose construction uses the axiom of choice).
OPEN
Does the longest arithmetic progression of primes in $\{1,\ldots,N\}$ have length $o(\log N)$?
It follows from the prime number theorem that such a progression has length $\leq(1+o(1))\log N$.
OPEN
Let $G_k(N)$ be such that any set of $N$ integers contains a subset of size at least $G_k(N)$ which does not contain a $k$-term arithmetic progression. Determine the size of $G_k(N)$. How does it relate to $R_k(N)$, the size of the largest subset of $\{1,\ldots,N\}$ without a $k$-term arithmetic progression? Is it true that \[\lim_{N\to \infty}\frac{R_3(N)}{G_3(N)}=1?\]
First asked and investigated by Riddell [Ri69]. It is trivial that $G_k(N)\leq R_k(N)$, and it is possible that $G_k(N) <R_k(N)$ (for example with $k=3$ and $N=14$). Komlós, Sulyok, and Szemerédi [KSS75] have shown that $R_k(N) \ll_k G_k(N)$.
Additional thanks to: Zachary Chase