Kahn [Ka92] proved that $\chi(G)\leq (1+o(1))n$ (for which Erdős gave him a 'consolation prize' of \$100). Hindman has proved the conjecture for $n<10$. Kang, Kelly, Kühn, Methuku, and Osthus [KKKMO21] have proved the answer is yes for all sufficiently large $n$.
In [Er97d] Erdős asks how large $\chi(G)$ can be if instead of asking for the copies of $K_n$ to be edge disjoint we only ask for their intersections to be triangle free, or to contain at most one edge.
In [Er81] offered \$1000 for a proof or disproof even just in the special case when $k=3$, which he expected 'contains the whole difficulty'. He also wrote 'I really do not see why this question is so difficult'.
The usual focus is on the regime where $k=O(1)$ is fixed (say $k=3$) and $n$ is large, although for the opposite regime Kostochka, Rödl, and Talysheva [KRT99] have shown \[f(n,k)=(1+O_n(k^{-1/2^n}))k^n.\]
See also [922] and the entry in the graphs problem collection.
Rödl [Ro82] has proved this for hypergraphs, and also proved there is such a graph (with chromatic number $\aleph_0$) if $f(n)=\epsilon n$ for any fixed constant $\epsilon>0$.
It is open even for $f(n)=\sqrt{n}$. Erdős offered \$500 for a proof but only \$250 for a counterexample. This fails (even with $f(n)\gg n$) if the graph has chromatic number $\aleph_1$ (see [111]).
The answer is yes, proved by Gruslys and Letzter [GrLe20].
In [Er97d] Erdős also asks for a lower bound for the count of edge-disjoint monochromatic triangles in single colour (the colour chosen to maximise this quantity), and speculates that the answer is $\geq cn^2$ for some constant $c>1/24$.
A shorter and simpler proof of an upper bound of the strength $4-c$ for some constant $c>0$ (and a generalisation to the case of more than two colours) was given by Balister, Bollobás, Campos, Griffiths, Hurley, Morris, Sahasrabudhe, and Tiba [BBCGHMST24].
This problem is #3 in Ramsey Theory in the graphs problem collection.
Prove that $f(n)=o(2^n)$.
Prove that $f(n)/2^{n/2}\to \infty$.
One can also ask about the existence and value of $\lim f(n)^{1/n}$.
What is the behaviour of $h_G(n)$? Is it true that $h_G(n)/n\to \infty$ for every graph $G$ with chromatic number $\aleph_1$?
On the other hand, Erdős, Hajnal, and Szemerédi proved that there is a $G$ with chromatic number $\aleph_1$ such that $h_G(n)\ll n^{3/2}$. In [Er81] Erdős conjectured that this can be improved to $\ll n^{1+\epsilon}$ for every $\epsilon>0$.
See also [74].
Erdős and Faudree observed that every graph with $2n$ vertices and at least $n^2+1$ edges has a triangle whose vertices are joined to at least $n+2$ vertices.
This was proved by Kwan and Sudakov [KwSu21].
This was proved by Bukh and Sudakov [BuSu07].
Jenssen, Keevash, Long, and Yepremyan [JKLY20] have proved that there must exist an induced subgraph which contains $\gg n^{2/3}$ distinct degrees (with no restriction on the number of vertices).
Is it true that for every infinite cardinal $\aleph$ there is a graph $G$ of which every finite subgraph is in $S$ and if the edges of $G$ are coloured with $\aleph$ many colours then there is a monochromatic triangle.
This problem was solved completely by Keevash and Sudakov [KeSu04], who provd that the corret threshold is $\lfloor n^2/4\rfloor$ for all $n\geq 7$, is $\binom{n}{2}$ for $n\leq 5$, and is $10$ for $n=6$.
This was resolved in the negative by Janzer, Steiner, and Sudakov [JSS24] - in fact, this fails even at $k=2$. Janzer, Steiner, and Sudakov proved that there exists a constant $c>0$ such that, for all large $n$, there exists a graph on $n$ vertices with chromatic number \[\geq c\frac{\log\log n}{\log\log \log n}\] which contains no $4$-regular subgraph.
Füredi proved that $f(n;3) \ll n^2$ and $f(n;3) > \binom{n}{2}$ for infinitely many $n$. More generally, Füredi proved that \[f(n;t) \ll \binom{n}{t-1}.\]