This problem is #3 in Ramsey Theory in the graphs problem collection.
This problem is #4 in Ramsey Theory in the graphs problem collection.
The weaker conjecture that there exists some $c>0$ such that $(2-c)\Delta^2$ sets suffice was proved by Molloy and Reed [MoRe97], who proved that $1.998\Delta^2$ sets suffice (for $\Delta$ sufficiently large). This was improved to $1.93\Delta^2$ by Bruhn and Joos [BrJo18] and to $1.835\Delta^2$ by Bonamy, Perrett, and Postle [BPP22].
Erdős and Nešetřil also asked the easier problem of whether $G$ containing at least $\tfrac{5}{4}\Delta^2$ many edges implies $G$ containing two strongly independent edges. This was proved independently by Chung-Trotter and Gyárfás-Tuza.
Does $c(n)^{1/n}\to \alpha$ for some $\alpha <2$?
Solved by Bradač [Br24], who proved that $\alpha=\lim c(n)^{1/n}$ exists and \[\alpha \leq 2^{H(1/3)}=1.8899\cdots,\] where $H(\cdot)$ is the binary entropy function. Seymour's construction proves that $\alpha\geq 3^{1/3}=1.442\cdots$. Bradač conjectures that this lower bound is the true value of $\alpha$.