This is true if $A$ is unbounded or dense in some interval. It therefore suffices to prove this when $A=\{a_1>a_2>\cdots\}$ is a countable strictly monotone sequence which converges to $0$.
Steinhaus [St20] has proved this is false whenever $A$ is a finite set.
This conjecture is known in many special cases (but, for example, it is open when $A=\{1,1/2,1/4,\ldots\}$, which is Problem 94 on Green's open problems list). For an overview of progress we recommend a nice survey by Svetic [Sv00] on this problem. A survey of more recent progress was written by Jung, Lai, and Mooroogen [JLM24].
Kovač and Predojević [KoPr24] have proved that this is true for cyclic quadrilaterals - that is, every set with infinite measure contains four distinct points on a circle such that the quadrilateral determined by these four points has area $1$. They also prove that there exists a set of infinite measure such that every convex polygon with congruent sides and all vertices in the set has area $<1$.
Koizumi [Ko25] has resolved this question, proving that any set with infinite measure must contain the vertices of an isosceles trapezoid, an isosceles triangle, and a right-angled triangle, all of area $1$.