The behaviour of $V(x)$ is now almost completely understood. Maier and Pomerance [MaPo88] proved \[V(x)=\frac{x}{\log x}e^{(C+o(1))(\log\log\log x)^2},\] for some explicit constant $C>0$. Ford [Fo98] improved this to \[V(x)\asymp\frac{x}{\log x}e^{C_1(\log\log\log x-\log\log\log\log x)^2+C_2\log\log\log x-C_3\log\log\log\log x}\] for some explicit constants $C_1,C_2,C_3>0$. Unfortunately this falls just short of an asymptotic formula for $V(x)$ and determining whether $V(2x)/V(x)\to 2$.
In [Er79e] Erdős asks further to estimate the number of $n\leq x$ such that the smallest solution to $\phi(m)=n$ satisfies $kx<m\leq (k+1)x$.
If $\delta'(n)$ is the density of integers which have exactly one divisor in $(n,2n)$ then is it true that $\delta'(n)=o(\delta(n))$?
Among many other results in [Fo08], Ford also proves that the second conjecture is false, and more generally that if $\delta_r(n)$ is the density of integers with exactly $r$ divisors in $(n,2n)$ then $\delta_r(n)\gg_r\delta(n)$.
A more precise result was proved by Hall and Tenenbaum [HaTe88] (see Section 4.6), who showed that the upper density is $\ll\epsilon \log(2/\epsilon)$. Hall and Tenenbaum further prove that $\tau^+(n)/\tau(n)$ has a distribution function.
Erdős and Graham also asked whether there is a good inequality known for $\sum_{n\leq x}\tau^+(n)$. This was provided by Ford [Fo08] who proved \[\sum_{n\leq x}\tau^+(n)\asymp x\frac{(\log x)^{1-\alpha}}{(\log\log x)^{3/2}}\] where \[\alpha=1-\frac{1+\log\log 2}{\log 2}=0.08607\cdots.\]
Terence Tao has observed that, for any divisor $m\mid n$, \[\frac{\tau(n/m)}{m} \leq G(n) \leq \tau(n),\] and hence for example $\tau(n)/4\leq G(n)\leq \tau(n)$ for even $n$. It is easy to then see that $G(n)$ grows on average, and in general behaves very similarly to $\tau(n)$ (and in particular the answer to the first question is yes). Tao suggests that this was a mistaken conjecture of Erdős, which he soon corrected a year later to [448].
For fixed $k\geq 1$ is $d_k(p)$ unimodular in $p$? That is, it first increases in $p$ until its maximum then decreases.
A similar question can be asked if we consider the density of integers whose $k$th smallest divisor is $d$. Erdős could show that this function is not unimodular.
The general situation is more complicated. For example suppose $A$ is the union of $(n_k,(1+\eta_k)n_k)\cap \mathbb{Z}$ where $1\leq n_1<n_2<\cdots$ is a lacunary sequence. If $\sum \eta_k<\infty$ then the density of $M_A$ exists and is $<1$. If $\eta_k=1/k$, so $\sum \eta_k=\infty$, then the density exists and is $<1$.
Erdős writes it 'seems certain' that there is some threshold $\alpha\in (0,1)$ such that, if $\eta_k=k^{-\beta}$, then the density of $M_A$ is $1$ if $\beta <\alpha$ and the density is $<1$ if $\beta >\alpha$.
See also [51].
See also [696].
Estimate $h(n)$ and $H(n)$. Is it true that $H(n)/h(n)\to \infty$ for almost all $n$?
See also [695].
See also [696].