Note that there are $\sim 2^{\binom{n}{2}}/n!$ many non-isomorphic graphs on $n$ vertices (folklore, often attributed to Pólya), and hence the bound in the problem statement is trivially best possible.
Erdős believed Brouwer's construction was essentially best possible, but Spencer suggested that $\gg \frac{2^{\binom{n}{2}}}{n!}$ may be possible. Erdős offered \$100 for a construction and \$25 for a proof that no such construction is possible.
Chakraborti, Janzer, Methuku, and Montgomery [CJMM24] have shown that such a graph can have at most $n(\log n)^{O(1)}$ many edges. Indeed, they prove that there exists a constant $C>0$ such that for any $k\geq 2$ there is a $c_k$ such that if a graph has $n$ vertices and at least $c_kn(\log n)^{C}$ many edges then it contains $k$ pairwise edge-disjoint cycles with the same vertex set.
Estimate $T(n,r)$ for $r\geq 2$. In particular, is it true that for every $\epsilon>0$ there exists $\delta>0$ such that for all $\epsilon n<r<(1/2-\epsilon) n$ we have \[T(n,r)<(2-\delta)^n?\]
An affirmative answer to the second question implies that the chromatic number of the unit distance graph in $\mathbb{R}^n$ (with two points joined by an edge if the distance between them is $1$) grows exponentially in $n$, which was proved by alternative methods by Frankl and Wilson [FrWi81] - see [704].
The answer to the second question is yes, proved by Frankl and Rödl [FrRo87].
See also [702].