Logo
All Random Solved Random Open
4 solved out of 22 shown (show only solved or open)
OPEN - $5000
If $A\subseteq \mathbb{N}$ has $\sum_{n\in A}\frac{1}{n}=\infty$ then must $A$ contain arbitrarily long arithmetic progressions?
This is essentially asking for good bounds on $r_k(N)$, the size of the largest subset of $\{1,\ldots,N\}$ without a non-trivial $k$-term arithmetic progression. For example, a bound like \[r_k(N) \ll_k \frac{N}{(\log N)(\log\log N)^2}\] would be sufficient.

Even the case $k=3$ is non-trivial, but was proved by Bloom and Sisask [BlSi20]. Much better bounds for $r_3(N)$ were subsequently proved by Kelley and Meka [KeMe23]. Green and Tao [GrTa17] proved $r_4(N)\ll N/(\log N)^{c}$ for some small constant $c>0$. Gowers [Go01] proved \[r_k(N) \ll \frac{N}{(\log\log N)^{c_k}},\] where $c_k>0$ is a small constant depending on $k$. The current best bounds for general $k$ are due to Leng, Sah, and Sawhney [LSS24], who show that \[r_k(N) \ll \frac{N}{\exp((\log\log N)^{c_k})}\] for some constant $c_k>0$ depending on $k$.

Curiously, Erdős [Er83c] thought this conjecture was the 'only way to approach' the conjecture that there are arbitrarily long arithmetic progressions of prime numbers, now a theorem due to Green and Tao [GrTa08] (see [219]).

In [Er81] Erdős makes the stronger conjecture that \[r_k(N) \ll_C\frac{N}{(\log N)^C}\] for every $C>0$ (now known for $k=3$ due to Kelley and Meka [KeMe23]) - see [140].

See also [139] and [142].

OPEN
We call $m$ practical if every integer $n<m$ is the sum of distinct divisors of $m$. If $m$ is practical then let $h(m)$ be such that $h(m)$ many divisors always suffice.

Are there infinitely many practical $m$ such that \[h(m) < (\log\log m)^{O(1)}?\] Is it true that $h(n!)<n^{o(1)}$? Or perhaps even $h(n!)<(\log n)^{O(1)}$?

It is easy to see that almost all numbers are not practical. Erdős originally showed that $h(n!) <n$. Vose [Vo85] proved the existence of infinitely many practical $m$ such that $h(m)\ll (\log m)^{1/2}$.

The sequence of practical numbers is A005153 in the OEIS.

See also [304] and [825].

Additional thanks to: Ralf Stephan
SOLVED
Are there infinitely many integers $n,m$ such that $\phi(n)=\sigma(m)$?
This would follow immediately from the twin prime conjecture. The answer is yes, proved by Ford, Luca, and Pomerance [FLP10].
OPEN - $100
Let $A\subseteq\mathbb{R}$ be an infinite set. Must there be a set $E\subset \mathbb{R}$ of positive measure which does not contain any set of the shape $aA+b$ for some $a,b\in\mathbb{R}$ and $a\neq 0$?
The Erdős similarity problem.

This is true if $A$ is unbounded or dense in some interval. It therefore suffices to prove this when $A=\{a_1>a_2>\cdots\}$ is a countable strictly monotone sequence which converges to $0$.

Steinhaus [St20] has proved this is false whenever $A$ is a finite set.

This conjecture is known in many special cases (but, for example, it is is open when $A=\{1,1/2,1/4,\ldots\}$. For an overview of progress we recommend a nice survey by Svetic [Sv00] on this problem.

Additional thanks to: Vjeksolav Kovac
OPEN
Let the van der Waerden number $W(k)$ be such that whenever $N\geq W(k)$ and $\{1,\ldots,N\}$ is $2$-coloured there must exist a monochromatic $k$-term arithmetic progression. Improve the bounds for $W(k)$ - for example, prove that $W(k)^{1/k}\to \infty$.
When $p$ is prime Berlekamp [Be68] has proved $W(p+1)\geq p2^p$. Gowers [Go01] has proved \[W(k) \leq 2^{2^{2^{2^{2^{k+9}}}}}.\]

In [Er81] Erdős further asks whether $W(k+1)/W(k)\to \infty$, or $W(k+1)-W(k)\to \infty$.

OPEN
Let $N(k,\ell)$ be the minimal $N$ such that for any $f:\{1,\ldots,N\}\to\{-1,1\}$ there must exist a $k$-term arithmetic progression $P$ such that \[ \left\lvert \sum_{n\in P}f(n)\right\rvert\geq \ell.\] Find good upper bounds for $N(k,\ell)$. Is it true that for any $c>0$ there exists some $C>1$ such that \[N(k,ck)\leq C^k?\] What about \[N(k,2)\leq C^k\] or \[N(k,\sqrt{k})\leq C^k?\]
Spencer [Sp73] has proved that if $k=2^tm$ with $m$ odd then \[N(k,1)=2^t(k-1)+1.\] Erdős and Graham write that 'no decent bound' is known even for $N(k,2)$. Probabilistic methods imply that, for every fixed constant $c>0$, we have $N(k,ck)>C_c^k$ for some $C_c>1$.
OPEN
Are there infinitely many $n$ such that, for all $k\geq 1$, \[ \omega(n+k) \ll k?\] (Here $\omega(n)$ is the number of distinct prime divisors of $n$.)
Related to [69]. Erdős and Graham [ErGr80] write 'we just know too little about sieves to be able to handle such a question ("we" here means not just us but the collective wisdom (?) of our poor struggling human race).'

See also [679] and [827].

OPEN
Let $a_n$ be a sequence such that $a_n/n\to \infty$. Is the sum \[\sum_n \frac{a_n}{2^{a_n}}\] irrational?
This is true under either of the stronger assumptions that
  • $a_{n+1}-a_n\to \infty$ or
  • $a_n \gg n\sqrt{\log n\log\log n}$.
Erdős and Graham speculate that the condition $\limsup a_{n+1}-a_n=\infty$ is not sufficient, but know of no example.
OPEN
Are there infinitely many $n$ such that there exists some $t\geq 2$ and $a_1,\ldots,a_t\geq 1$ such that \[\frac{n}{2^n}=\sum_{1\leq k\leq t}\frac{a_k}{2^{a_k}}?\] Is this true for all $n$? Is there a rational $x$ such that \[x = \sum_{k=1}^\infty \frac{a_k}{2^{a_k}}\] has at least $2^{\aleph_0}$ solutions?
Related to [260].

In [Er88c] Erdős notes that Cusick had a simple proof that there do exist infinitely many such $n$. Erdődoes not record what this was, but Kovač has provided the following proof: for every positive integer $m$ and $n=2^{m+1}-m-2$ we have \[\frac{n}{2^n}=\sum_{n<k\leq n+m}\frac{k}{2^k}.\]

Additional thanks to: Zachary Chase and Vjekoslav Kovac
OPEN
Let $V(x)$ count the number of $n\leq x$ such that $\phi(m)=n$ is solvable. Does $V(2x)/V(x)\to 2$? Is there an asymptotic formula for $V(x)$?
Pillai [Pi29] proved $V(x)=o(x)$. Erdős [Er35b] proved $V(x)=x(\log x)^{-1+o(1)}$.

The behaviour of $V(x)$ is now almost completely understood. Maier and Pomerance [MaPo88] proved \[V(x)=\frac{x}{\log x}e^{(C+o(1))(\log\log\log x)^2},\] for some explicit constant $C>0$. Ford [Fo98] improved this to \[V(x)\asymp\frac{x}{\log x}e^{C_1(\log\log\log x-\log\log\log\log x)^2+C_2\log\log\log x-C_3\log\log\log\log x}\] for some explicit constants $C_1,C_2,C_3>0$. Unfortunately this falls just short of an asymptotic formula for $V(x)$ and determining whether $V(2x)/V(x)\to 2$.

In [Er79e] Erdős asks further to estimate the number of $n\leq x$ such that the smallest solution to $\phi(m)=n$ satisfies $kx<m\leq (k+1)x$.

See also [417] and [821].

Additional thanks to: Kevin Ford
SOLVED
Are there infinitely many integers not of the form $n-\phi(n)$?
Asked by Erdős and Sierpiński. It follows from the Goldbach conjecture that every odd number can be written as $n-\phi(n)$. What happens for even numbers?

Erdős [Er73b] has shown that a positive density set of integers cannot be written as $\sigma(n)-n$.

This is true, as shown by Browkin and Schinzel [BrSc95], who show that any integer of the shape $2^{k}\cdot 509203$ is not of this form. It seems to be open whether there is a positive density set of integers not of this form.

Additional thanks to: Stefan Steinerberger
SOLVED
Is it true that, for all sufficiently large $n$, \[p_n^2 \leq p_{n+i}p_{n-i}\] for all $i<n$, where $p_k$ is the $k$th prime?
Asked by Erdős and Straus. The answer is no, as shown by Pomerance [Po79].
OPEN
Let $A\subset\mathbb{N}$ be the set of $n$ such that for every prime $p\mid n$ there exists some $d\mid n$ such that $d\equiv 1\pmod{p}$. Is it true that there exists some constant $c>0$ such that for all large $N$ \[\frac{\lvert A\cap [1,N]\rvert}{N}=\exp(-(c+o(1))\sqrt{\log N}\log\log N).\]
Erdős could prove that there exists some constant $c>0$ such that for all large $N$ \[\exp(-c\sqrt{\log N}\log\log N)\leq \frac{\lvert A\cap [1,N]\rvert}{N}\] and \[\frac{\lvert A\cap [1,N]\rvert}{N}\leq \exp(-(1+o(1))\sqrt{\log N\log\log N}).\] Erdős asked about this because $\lvert A\cap [1,N]\rvert$ provides an upper bound for the number of integers $n\leq N$ for which there is a non-cyclic simple group of order $n$.
OPEN
Let $c(n)$ be minimal such that if $k\geq c(n)$ then the $n$-dimensional unit cube can be decomposed into $k$ homothetic $n$-dimensional cubes. Give good bounds for $c(n)$ - in particular, is it true that $c(n) \gg n^n$?
A problem first investigated by Hadwiger, who proved the lower bound \[c(n) \geq 2^n+2^{n-1}.\] It is easy to see that $c(2)=6$. Meier conjectured $c(3)=48$. Burgess and Erdős [Er74b] proved \[c(n) \ll n^{n+1}.\] Erdős wrote 'I am certain that if $n+1$ is a prime then $c(n)>n^n$.'.
OPEN
Let $h(n)$ be minimal such that $2^n-1,3^n-1,\ldots,h(n)^n-1$ are mutually coprime.

Does, for every prime $p$, the density $\delta_p$ of integers with $h(n)=p$ exist? Does $\liminf h(n)=\infty$? Is it true that if $p$ is the greatest prime such that $p-1\mid n$ and $p>n^\epsilon$ then $h(n)=p$?

It is easy to see that $h(n)=n+1$ if and only if $n+1$ is prime, and that $h(n)$ is unbounded for odd $n$.

It is probably true that $h(n)=3$ for infinitely many $n$.

Additional thanks to: Bhavik Mehta
OPEN
Let $H(n)$ be the smallest integer $l$ such that there exist $k<l$ with $(k^n-1,l^n-1)=1$.

Is it true that $H(n)=3$ infinitely often? (That is, $(2^n-1,3^n-1)=1$ infinitely often?)

Estimate $H(n)$. Is it true that there exists some constant $c>0$ such that, for all $\epsilon>0$, \[H(n) > \exp(n^{(c-\epsilon)/\log\log n})\] for infinitely many $n$ and \[H(n) < \exp(n^{(c+\epsilon)/\log\log n})\] for all large enough $n$?

Does a similar upper bound hold for the smallest $k$ such that $(k^n-1,2^n-1)=1$?

Erdős [Er74b] proved that there exists a constant $c>0$ such that \[H(n) > \exp(n^{c/(\log\log n)^2})\] for infinitely many $n$.

The sequence $H(n)$ for $1\leq n\leq 10$ is \[3,3,3,6,3,18,3,6,3,12.\] The sequence of $n$ for which $(2^n-1,3^n-1)=1$ is A263647 in the OEIS.

OPEN
Let $g(n)$ count the number of $m$ such that $\phi(m)=n$. Is it true that, for every $\epsilon>0$, there exist infinitely many $n$ such that \[g(n) > n^{1-\epsilon}?\]
Pillai proved that $\limsup g(n)=\infty$ and Erdős [Er35b] proved that there exists some constant $c>0$ such that $g(n) >n^c$ for infinitely many $n$.

This conjecture would follow if we knew that, for every $\epsilon>0$, there are $\gg_\epsilon \frac{x}{\log x}$ many primes $p<x$ such that all prime factors of $p-1$ are $<p^\epsilon$.

See also [416].

OPEN
Does the set of integers of the form $n+\phi(n)$ have positive density?
A similar question can be asked for $n+\sigma(n)$, where $\sigma$ is the sum of divisors function.
SOLVED
Let $\alpha\geq 1$. Is there a sequence of integers $n_k,m_k$ such that $n_k/m_k\to \alpha$ and $\sigma(n_k)=\sigma(m_k)$ for all $k\geq 1$, where $\sigma$ is the sum of divisors function?
Erdős [Er74b] writes it is 'easy to prove the analogous result for $\phi(n)$'.

The answer is yes, proved by Pollack [Po15b].

OPEN
Let $h(x)$ count the number of integers $1\leq a<b<x$ such that $(a,b)=1$ and $\sigma(a)=\sigma(b)$, where $\sigma$ is the sum of divisors function.

Is it true that $h(x)>x^{2-o(1)}$?

Erdős [Er74b] proved that $\limsup h(x)/x= \infty$, and claimed a similar proof for this problem. A complete proof that $h(x)/x\to \infty$ was provided by Pollack and Pomerance [PoPo16].

A similar question can be asked if we replace the condition $(a,b)=1$ with the condition that $a$ and $b$ are squarefree.

OPEN
Is there an absolute constant $C>0$ such that every integer $n$ with $\sigma(n)>Cn$ is the distinct sum of proper divisors of $n$?
A problem of Benkoski and Erdős. This could be true with $C=3$. We must have $C>2$ since $\sigma(70)=144$ but $70$ is not the distinct sum of integers from $\{1,2,5,7,10,14,35\}$.

Erdős suggested that as $C\to \infty$ only divisors at most $\epsilon n$ need to be used, where $\epsilon \to 0$.

See also [18].

OPEN
Are there infinitely many $n$ such that, for all $k\geq 1$, \[\tau(n+k)\ll k?\]
A stronger form of [248].