Logo
All Random Solved Random Open
46 solved out of 107 shown (show only solved or open)
OPEN - $500
If $A\subseteq \{1,\ldots,N\}$ with $\lvert A\rvert=n$ is such that the subset sums $\sum_{a\in S}a$ are distinct for all $S\subseteq A$ then \[N \gg 2^{n}.\]
Erdős called this 'perhaps my first serious problem'. The powers of $2$ show that $2^n$ would be best possible here. The trivial lower bound is $N \gg 2^{n}/n$, since all $2^n$ distinct subset sums must lie in $[0,Nn)$. Erdős and Moser [Er56] proved \[ N\geq (\tfrac{1}{4}-o(1))\frac{2^n}{\sqrt{n}}.\] A number of improvements of the constant have been given (see [St23] for a history), with the current record $\sqrt{2/\pi}$ first proved in unpublished work of Elkies and Gleason. Two proofs achieving this constant are provided by Dubroff, Fox, and Xu [DFX21], who in fact prove the exact bound $N\geq \binom{n}{\lfloor n/2\rfloor}$.

In [Er73] and [ErGr80] the generalisation where $A\subseteq (0,N]$ is a set of real numbers such that the subset sums all differ by at least $1$ is proposed, with the same conjectured bound. (The second proof of [DFX21] applies also to this generalisation.)

This problem appears in Erdős' book with Spencer [ErSp74] in the final chapter titled 'The kitchen sink'. As Ruzsa writes in [Ru99] "it is a rich kitchen where such things go to the sink".

See also [350].

Additional thanks to: Zachary Hunter
SOLVED - $1000
Can the smallest modulus of a covering system be arbitrarily large?
Described by Erdős as 'perhaps my favourite problem'. Hough [Ho15], building on work of Filaseta, Ford, Konyagin, Pomerance, and Yu [FFKPY07], has shown the answer is no: the smallest modulus must be at most $10^{18}$.

An alternative, simpler, proof was given by Balister, Bollobás, Morris, Sahasrabudhe, and Tiba [BBMST22], who improved the bound on the smallest modulus to $616000$.

SOLVED - $10000
For any $C>0$ are there infinitely many $n$ such that \[p_{n+1}-p_n> C\frac{\log\log n\log\log\log\log n}{(\log\log \log n)^2}\log n?\]
The peculiar quantitative form of Erdős' question was motivated by an old result of Rankin [Ra38], who proved there exists some constant $C>0$ such that the claim holds. Solved by Maynard [Ma16] and Ford, Green, Konyagin, and Tao [FGKT16]. The best bound available, due to all five authors [FGKMT18], is that there are infinitely many $n$ such that \[p_{n+1}-p_n\gg \frac{\log\log n\log\log\log\log n}{\log\log \log n}\log n.\] The likely truth is a lower bound like $\gg(\log n)^2$. In [Er97c] Erdős revised the value of this problem to \$5000 and reserved the \$10000 for a lower bound of $>(\log n)^{1+c}$ for some $c>0$.

See also [687].

OPEN
Let $C\geq 0$. Is there an infinite sequence of $n_i$ such that \[\lim_{i\to \infty}\frac{p_{n_i+1}-p_{n_i}}{\log n_i}=C?\]
Let $S$ be the set of limit points of $(p_{n+1}-p_n)/\log n$. This problem asks whether $S=[0,\infty]$. Although this conjecture remains unproven, a lot is known about $S$. Some highlights:
  • $\infty\in S$ by Westzynthius' result [We31] on large prime gaps,
  • $0\in S$ by the work of Goldston, Pintz, and Yildirim [GPY09] on small prime gaps,
  • Erdős [Er55] and Ricci [Ri56] independently showed that $S$ has positive Lebesgue measure,
  • Hildebrand and Maier [HiMa88] showed that $S$ contains arbitrarily large (finite) numbers,
  • Pintz [Pi16] showed that there exists some small constant $c>0$ such that $[0,c]\subset S$,
  • Banks, Freiberg, and Maynard [BFM16] showed that at least $12.5\%$ of $[0,\infty)$ belongs to $S$,
  • Merikoski [Me20] showed that at least $1/3$ of $[0,\infty)$ belongs to $S$, and that $S$ has bounded gaps.
In [Er97c] Erdős asks whether $S$ is everywhere dense.
SOLVED - $100
Let $d_n=p_{n+1}-p_n$. Are there infinitely many $n$ such that $d_n<d_{n+1}<d_{n+2}$?
Conjectured by Erdős and Turán [ErTu48]. Shockingly Erdős offered \$25000 for a disproof of this, but as he comments, it 'is certainly true'.

Indeed, the answer is yes, as proved by Banks, Freiberg, and Turnage-Butterbaugh [BFT15] with an application of the Maynard-Tao machinery concerning bounded gaps between primes [Ma15]. They in fact prove that, for any $m\geq 1$, there are infinitely many $n$ such that \[d_n<d_{n+1}<\cdots <d_{n+m}\] and infinitely many $n$ such that \[d_n> d_{n+1}>\cdots >d_{n+m}.\]

Additional thanks to: Mehtaab Sawhney
OPEN
Is there a covering system all of whose moduli are odd?
Asked by Erdős and Selfridge (sometimes also with Schinzel). They also asked whether there can be a covering system such that all the moduli are odd and squarefree. The answer to this stronger question is no, proved by Balister, Bollobás, Morris, Sahasrabudhe, and Tiba [BBMST22].

Hough and Nielsen [HoNi19] proved that at least one modulus must be divisible by either $2$ or $3$. A simpler proof of this fact was provided by Balister, Bollobás, Morris, Sahasrabudhe, and Tiba [BBMST22].

Selfridge has shown (as reported in [Sc67]) that such a covering system exists if a covering system exists with moduli $n_1,\ldots,n_k$ such that no $n_i$ divides any other $n_j$ (but the latter has been shown not to exist, see [586]).

Additional thanks to: Antonio Girao
OPEN - $500
If $A\subseteq \mathbb{N}$ is such that $A+A$ contains all but finitely many integers then $\limsup 1_A\ast 1_A(n)=\infty$.
Conjectured by Erdős and Turán. They also suggest the stronger conjecture that $\limsup 1_A\ast 1_A(n)/\log n>0$.

Another stronger conjecture would be that the hypothesis $\lvert A\cap [1,N]\rvert \gg N^{1/2}$ for all large $N$ suffices.

Erdős and Sárközy conjectured the stronger version that if $A=\{a_1<a_2<\cdots\}$ and $B=\{b_1<b_2<\cdots\}$ with $a_n/b_n\to 1$ are such that $A+B=\mathbb{N}$ then $\limsup 1_A\ast 1_B(n)=\infty$.

See also [40].

OPEN - $1000
Let $h(N)$ be the maximum size of a Sidon set in $\{1,\ldots,N\}$. Is it true that, for every $\epsilon>0$, \[h(N) = N^{1/2}+O_\epsilon(N^\epsilon)?\]
A problem of Erdős and Turán. It may even be true that $h(N)=N^{1/2}+O(1)$, but Erdős remarks this is perhaps too optimistic. Erdős and Turán [ErTu41] proved an upper bound of $N^{1/2}+O(N^{1/4})$, with an alternative proof by Lindström [Li69]. Both proofs in fact give \[h(N) \leq N^{1/2}+N^{1/4}+1.\] Balogh, Füredi, and Roy [BFR21] improved the bound in the error term to $0.998N^{1/4}$, which has been further optimised by O'Bryant [OB22] to yield \[h(N)\leq N^{1/2}+0.99703N^{1/4}\] for sufficiently large $N$.

See also [241].

Additional thanks to: Zachary Hunter
OPEN
Is there a set $A\subset\mathbb{N}$ such that \[\lvert A\cap\{1,\ldots,N\}\rvert = o((\log N)^2)\] and such that every large integer can be written as $p+a$ for some prime $p$ and $a\in A$?

Can the bound $O(\log N)$ be achieved? Must such an $A$ satisfy \[\liminf \frac{\lvert A\cap\{1,\ldots,N\}\rvert}{\log N}> 1?\]

Such a set is called an additive complement to the primes.

Erdős [Er54] proved that such a set $A$ exists with $\lvert A\cap\{1,\ldots,N\}\rvert\ll (\log N)^2$ (improving a previous result of Lorentz [Lo54] who achieved $\ll (\log N)^3$). Wolke [Wo96] has shown that such a bound is almost true, in that we can achieve $\ll (\log N)^{1+o(1)}$ if we only ask for almost all integers to be representable.

The answer to the third question is yes: Ruzsa [Ru98c] has shown that we must have \[\liminf \frac{\lvert A\cap\{1,\ldots,N\}\rvert}{\log N}\geq e^\gamma\approx 1.781.\]

OPEN
Find the optimal constant $c>0$ such that the following holds.

For all sufficiently large $N$, if $A\sqcup B=\{1,\ldots,2N\}$ is a partition into two equal parts, so that $\lvert A\rvert=\lvert B\rvert=N$, then there is some $x$ such that the number of solutions to $a-b=x$ with $a\in A$ and $b\in B$ is at least $cN$.

The minimum overlap problem. The example (with $N$ even) $A=\{N/2+1,\ldots,3N/2\}$ shows that $c\leq 1/2$ (indeed, Erdős initially conjectured that $c=1/2$). The lower bound of $c\geq 1/4$ is trivial, and Scherk improved this to $1-1/\sqrt{2}=0.29\cdots$. The current records are \[0.379005 < c < 0.380926\cdots,\] the lower bound due to White [Wh22] and the upper bound due to Haugland [Ha16].
SOLVED
We say that $A\subset \mathbb{N}$ is an essential component if $d_s(A+B)>d_s(B)$ for every $B\subset \mathbb{N}$ with $0<d_s(B)<1$ where $d_s$ is the Schnirelmann density.

Can a lacunary set $A\subset\mathbb{N}$ be an essential component?

The answer is no by Ruzsa [Ru87], who proved that if $A$ is an essential component then there exists some constant $c>0$ such that $\lvert A\cap \{1,\ldots,N\}\rvert \geq (\log N)^{1+c}$ for all large $N$.
OPEN - $500
Is there an infinite Sidon set $A\subset \mathbb{N}$ such that \[\lvert A\cap \{1\ldots,N\}\rvert \gg_\epsilon N^{1/2-\epsilon}\] for all $\epsilon>0$?
The trivial greedy construction achieves $\gg N^{1/3}$. The current best bound of $\gg N^{\sqrt{2}-1+o(1)}$ is due to Ruzsa [Ru98]. (Erdős [Er73] had offered \$25 for any construction which achieves $N^{c}$ for some $c>1/3$.) Erdős proved that for every infinite Sidon set $A$ we have \[\liminf \frac{\lvert A\cap \{1,\ldots,N\}\rvert}{N^{1/2}}=0,\] and also that there is a set $A\subset \mathbb{N}$ with $\lvert A\cap \{1\ldots,N\}\rvert \gg_\epsilon N^{1/2-\epsilon}$ such that $1_A\ast 1_A(n)=O(1)$.

Erdős and Rényi have constructed, for any $\epsilon>0$, a set $A$ such that \[\lvert A\cap \{1\ldots,N\}\rvert \gg_\epsilon N^{1/2-\epsilon}\] for all large $N$ and $1_A\ast 1_A(n)\ll_\epsilon 1$ for all $n$.

SOLVED - $500
If $f:\mathbb{N}\to \{-1,+1\}$ then is it true that for every $C>0$ there exist $d,m\geq 1$ such that \[\left\lvert \sum_{1\leq k\leq m}f(kd)\right\rvert > C?\]
The Erdős discrepancy problem. This is true, and was proved by Tao [Ta16], who also proved the more general case when $f$ takes values on the unit sphere.

In [Er81] it is further conjectured that \[\max_{md\leq x}\left\lvert \sum_{1\leq k\leq m}f(kd)\right\rvert \gg \log x.\]

OPEN - $250
Find the value of $\lim_{k\to \infty}R(k)^{1/k}$.
Erdős offered \$100 for just a proof of the existence of this constant, without determining its value. He also offered \$1000 for a proof that the limit does not exist, but says 'this is really a joke as [it] certainly exists'. Erdős proved \[\sqrt{2}\leq \liminf_{k\to \infty}R(k)^{1/k}\leq \limsup_{k\to \infty}R(k)^{1/k}\leq 4.\] The upper bound has been improved to $4-\tfrac{1}{128}$ by Campos, Griffiths, Morris, and Sahasrabudhe [CGMS23].

This problem is #3 in Ramsey Theory in the graphs problem collection.

OPEN - $500
Does every set of $n$ distinct points in $\mathbb{R}^2$ determine $\gg n/\sqrt{\log n}$ many distinct distances?
A $\sqrt{n}\times\sqrt{n}$ integer grid shows that this would be the best possible. Nearly solved by Guth and Katz [GuKa15] who proved that there are always $\gg n/\log n$ many distinct distances.

A stronger form (see [604]) may be true: is there a single point which determines $\gg n/\sqrt{\log n}$ distinct distances, or even $\gg n$ many such points, or even that this is true averaged over all points.

See also [661].

OPEN - $500
Does every set of $n$ distinct points in $\mathbb{R}^2$ contain at most $n^{1+O(1/\log\log n)}$ many pairs which are distance 1 apart?
The unit distance problem. In [Er94b] Erdős dates this conjecture to 1946.

This would be the best possible, as is shown by a set of lattice points. It is easy to show that there are $O(n^{3/2})$ many such pairs. The best known upper bound is $O(n^{4/3})$, due to Spencer, Szemerédi, and Trotter [SST84]. In [Er83c] and [Er85] Erdős offers \$250 for an upper bound of the form $n^{1+o(1)}$.

Part of the difficulty of this problem is explained by a result of Valtr (see [Sz16]), who constructed a metric on $\mathbb{R}^2$ and a set of $n$ points with $\gg n^{4/3}$ unit distance pairs (with respect to this metric). The methods of the upper bound proof of Spencer, Szemerédi, and Trotter [SST84] generalise to include this metric. Therefore to prove an upper bound better than $n^{4/3}$ some special feature of the Euclidean metric must be exploited.

See a survey by Szemerédi [Sz16] for further background and related results.

See also [92], [96], and [605].

SOLVED
If $n$ distinct points in $\mathbb{R}^2$ form a convex polygon then they determine at least $\lfloor \frac{n+1}{2}\rfloor$ distinct distances.
Solved by Altman [Al63]. The stronger variant that says there is one point which determines at least $\lfloor \frac{n+1}{2}\rfloor$ distinct distances is still open. Fishburn in fact conjectures that if $R(x)$ counts the number of distinct distances from $x$ then \[\sum_{x\in A}R(x) \geq \binom{n}{2}.\]

Szemerédi conjectured (see [Er97e]) that this stronger variant remains true if we only assume that no three points are on a line, and proved this with the weaker bound of $n/3$.

See also [660].

OPEN - $100
Does every convex polygon have a vertex with no other $4$ vertices equidistant from it?
Erdős originally conjectured this with no $3$ vertices equidistant, but Danzer found a convex polygon on 9 points such that every vertex has three vertices equidistant from it (but this distance depends on the vertex), and Fishburn and Reeds [FiRe92] have found a convex polygon on 20 points such that every vertex has three vertices equidistant from it (and this distance is the same for all vertices).

If this fails for $4$, perhaps there is some constant for which it holds?

Erdős suggested this as an approach to solve [96]. Indeed, if this problem holds for $k+1$ vertices then, by induction, this implies an upper bound of $kn$ for [96].

The answer is no if we omit the requirement that the polygon is convex (I thank Boris Alexeev and Dustin Mixon for pointing this out), since for any $d$ there are graphs with minimum degree $d$ which can be embedded in the plane such that each edge has length one (for example one can take the $d$-dimensional hypercube graph on $2^d$ vertices). One can then connect the vertices in a cyclic order so that there are no self-intersections and no three consecutive vertices on a line, thus forming a (non-convex) polygon.

Additional thanks to: Boris Alexeev and Dustin Mixon
OPEN - $500
Let $f(n)$ be minimal such that any $f(n)$ points in $\mathbb{R}^2$, no three on a line, contain $n$ points which form the vertices of a convex $n$-gon. Prove that $f(n)=2^{n-2}+1$.
The Erdős-Klein-Szekeres 'Happy Ending' problem. The problem originated in 1931 when Klein observed that $f(4)=5$. Turán and Makai showed $f(5)=9$. Erdős and Szekeres proved the bounds \[2^{n-2}+1\leq f(n)\leq \binom{2n-4}{n-2}+1.\] ([ErSz60] and [ErSz35] respectively). There were several improvements of the upper bound, but all of the form $4^{(1+o(1))n}$, until Suk [Su17] proved \[f(n) \leq 2^{(1+o(1))n}.\] The current best bound is due to Holmsen, Mojarrad, Pach, and Tardos [HMPT20], who prove \[f(n) \leq 2^{n+O(\sqrt{n\log n})}.\]

In [Er97e] Erdős clarifies that the \$500 is for a proof, and only offers \$100 for a disproof.

This problem is #1 in Ramsey Theory in the graphs problem collection.

See also [216] and [651].

Additional thanks to: Casey Tompkins
OPEN
If $p(z)\in\mathbb{C}[z]$ is a monic polynomial of degree $n$ then is the length of the curve $\{ z\in \mathbb{C} : \lvert p(z)\rvert=1\}$ maximised when $p(z)=z^n-1$?
A problem of Erdős, Herzog, and Piranian [EHP58].
Additional thanks to: Geoffrey Irving
SOLVED
If $p(z)$ is a polynomial of degree $n$ such that $\{z : \lvert p(z)\rvert\leq 1\}$ is connected then is it true that \[\max_{\substack{z\in\mathbb{C}\\ \lvert p(z)\rvert\leq 1}} \lvert p'(z)\rvert \leq (\tfrac{1}{2}+o(1))n^2?\]
The lower bound is easy: this is $\geq n$ and equality holds if and only if $p(z)=z^n$. The assumption that the set is connected is necessary, as witnessed for example by $p(z)=z^2+10z+1$.

The Chebyshev polynomials show that $n^2/2$ is best possible here. Erdős originally conjectured this without the $o(1)$ term but Szabados observed that was too strong. Pommerenke [Po59a] proved an upper bound of $\frac{e}{2}n^2$.

Eremenko and Lempert [ErLe94] have shown this is true, and in fact Chebyshev polynomials are the extreme examples.

Additional thanks to: Stefan Steinerberger
SOLVED
Let $p(z)=\prod_{i=1}^n (z-z_i)$ for $\lvert z_i\rvert \leq 1$. Then the area of the set where \[A=\{ z: \lvert p(z)\rvert <1\}\] is $>n^{-O(1)}$ (or perhaps even $>(\log n)^{-O(1)}$).
Conjectured by Erdős, Herzog, and Piranian [ErHePi58]. The lower bound $\mu(A) \gg n^{-4}$ follows from a result of Pommerenke [Po61]. The stronger lower bound $\gg (\log n)^{-O(1)}$ is still open.

Wagner [Wa88] proves, for $n\geq 3$, the existence of such polynomials with \[\mu(A) \ll_\epsilon (\log\log n)^{-1/2+\epsilon}\] for all $\epsilon>0$.

Additional thanks to: Boris Alexeev and Dustin Mixon
SOLVED - $100
Let $z_i$ be an infinite sequence of complex numbers such that $\lvert z_i\rvert=1$ for all $i\geq 1$, and for $n\geq 1$ let \[p_n(z)=\prod_{i\leq n} (z-z_i).\] Let $M_n=\max_{\lvert z\rvert=1}\lvert p_n(z)\rvert$. Is it true that $\limsup M_n=\infty$? Is it true that there exists $c>0$ such that for infinitely many $n$ we have $M_n > n^c$, or even that for all $n$ \[\sum_{k\leq n}M_k > n^{1+c}?\]
The weaker conjecture that $\limsup M_n=\infty$ was proved by Wagner, who show that there is some $c>0$ with $M_n>(\log n)^c$ infinitely often.

This was solved by Beck [Be91], who proved that there exists some $c>0$ such that \[\max_{n\leq N} M_n > N^c.\]

Additional thanks to: Winston Heap
OPEN
Let the van der Waerden number $W(k)$ be such that whenever $N\geq W(k)$ and $\{1,\ldots,N\}$ is $2$-coloured there must exist a monochromatic $k$-term arithmetic progression. Improve the bounds for $W(k)$ - for example, prove that $W(k)^{1/k}\to \infty$.
When $p$ is prime Berlekamp [Be68] has proved $W(p+1)\geq p2^p$. Gowers [Go01] has proved \[W(k) \leq 2^{2^{2^{2^{2^{k+9}}}}}.\]

In [Er81] Erdős further asks whether $W(k+1)/W(k)\to \infty$, or $W(k+1)-W(k)\to \infty$.

SOLVED - $1000
Let $r_k(N)$ be the size of the largest subset of $\{1,\ldots,N\}$ which does not contain a non-trivial $k$-term arithmetic progression. Prove that $r_k(N)=o(N)$.
Proved by Szemerédi [Sz74]. The best known bounds are due to Kelley and Meka [KeMe23] for $k=3$ (with further slight improvements in [BlSi23]), Green and Tao [GrTa17] for $k=4$, and Leng, Sah, and Sawhney [LSS24] for $k\geq 5$.

See also [3].

Additional thanks to: Zachary Chase
OPEN - $500
Let $A\subset (1,\infty)$ be a countably infinite set such that for all $x\neq y\in A$ and integers $k\geq 1$ we have \[ \lvert kx -y\rvert \geq 1.\] Does this imply that \[\liminf \frac{\lvert A\cap [1,x]\rvert}{x}=0?\] Or \[\sum_{x\in A}\frac{1}{x\log x}<\infty,\] or \[\sum_{\substack{x <n\\ x\in A}}\frac{1}{x}=o(\log n)?\] Perhaps even \[\sum_{\substack{x <n\\ x\in A}}\frac{1}{x}\ll \frac{\log x}{\sqrt{\log\log x}}?\]
Note that if $A$ is a set of integers then the condition implies that $A$ is a primitive set (that is, no element of $A$ is divisible by any other), for which the convergence of $\sum_{n\in A}\frac{1}{n\log n}$ was proved by Erdős [Er35], and that $\sum_{n<x}\frac{1}{n}=o(\log x)$ was proved by Behrend [Be35].

In [Er73] mentions an unpublished proof of Haight that \[\lim \frac{\lvert A\cap [1,x]\rvert}{x}=0\] holds if the elements of $A$ are independent over $\mathbb{Q}$.

Additional thanks to: Zachary Chase
SOLVED - $250
The density of integers which have two divisors $d_1,d_2$ such that $d_1<d_2<2d_1$ exists and is equal to $1$.
In [Er79] asks the stronger version with $2$ replaced by any constant $c>1$.

The answer is yes (also to this stronger version), proved by Maier and Tenenbaum [MaTe84]. (Tenenbaum has told me that they received \$650 for their solution.)

See also [449].

OPEN - $250
Give an asymptotic formula for $R(3,k)$.
It is known that there exists some constant $c>0$ such that for large $k$ \[c\frac{k^2}{\log k}\leq R(3,k) \leq (1+o(1))\frac{k^2}{\log k}.\] The lower bound is due to Kim [Ki95], the upper bound is due to Shearer [Sh83], improving an earlier bound of Ajtai, Komlós, and Szemerédi [AjKoSz80]. The lower bound has been improved to \[\left(\frac{1}{4}-o(1)\right)\frac{k^2}{\log k}\] independently by Bohman and Keevash [BoKe21] and Pontiveros, Griffiths and Morris [PGM20]. The latter collection of authors conjecture that this lower bound is the true order of magnitude.

See also [544].

OPEN - $250
Let $R(3;k)$ be the minimal $n$ such that if the edges of $K_n$ are coloured with $k$ colours then there must exist a monochromatic triangle. Determine \[\lim_{k\to \infty}R(3;k)^{1/k}.\]
Erdős offers \$100 for showing that this limit is finite. An easy pigeonhole argument shows that \[R(3;k)\leq 2+k(R(3;k-1)-1),\] from which $R(3;k)\leq \lceil e k!\rceil$ immediately follows. The best-known upper bounds are all of the form $ck!+O(1)$, and arise from this type of inductive relationship and computational bounds for $R(3;k)$ for small $k$. The best-known lower bound (coming from lower bounds for Schur numbers) is due to Exoo [Ex94], \[R(3;k) \gg (321)^{k/5}.\]

See also [483].

See also the entry in the graphs problem collection.

Additional thanks to: Antonio Girao, David Penman
OPEN
Let $n_1<\cdots < n_r\leq N$ with associated $a_i\pmod{n_i}$ such that the congruence classes are disjoint (that is, every integer is $\equiv a_i\pmod{n_i}$ for at most one $1\leq i\leq r$). How large can $r$ be in terms of $N$?
Let $f(N)$ be the maximum possible $r$. Erdős and Stein conjectured that $f(N)=o(N)$, which was proved by Erdős and Szemerédi [ErSz68], who showed that, for every $\epsilon>0$, \[\frac{N}{\exp((\log N)^{1/2+\epsilon})} \ll_\epsilon f(N) < \frac{N}{(\log N)^c}\] for some $c>0$. Erdős believed the lower bound is closer to the truth.
OPEN
Let $s_1<s_2<\cdots$ be the sequence of squarefree numbers. Is it true that, for any $\epsilon>0$ and large $n$, \[s_{n+1}-s_n \ll_\epsilon s_n^{\epsilon}?\] Is it true that \[s_{n+1}-s_n \leq (1+o(1))\frac{\pi^2}{6}\frac{\log s_n}{\log\log s_n}?\]
Erdős [Er51] showed that there are infinitely many $n$ such that \[s_{n+1}-s_n > (1+o(1))\frac{\pi^2}{6}\frac{\log s_n}{\log\log s_n},\] so this bound would be the best possible.

In [Er79] Erdős says perhaps $s_{n+1}-s_n \ll \log s_n$, but he is 'very doubtful'.

Filaseta and Trifonov [FiTr92] proved an upper bound of $s_n^{1/5}$. Pandey [Pa24] has improved this exponent to $1/5-c$ for some constant $c>0$.

See also [489] and [145].

Additional thanks to: Zachary Chase
SOLVED
Let $f(n)$ be minimal such that the following holds. For any $n$ points in $\mathbb{R}^2$, not all on a line, there must be at least $f(n)$ many lines which contain exactly 2 points (called 'ordinary lines'). Does $f(n)\to \infty$? How fast?
Conjectured by Erdős and de Bruijn. The Sylvester-Gallai theorem states that $f(n)\geq 1$. The fact that $f(n)\geq 1$ was conjectured by Sylvester in 1893. Erdős rediscovered this conjecture in 1933 and told it to Gallai who proved it.

That $f(n)\to \infty$ was proved by Motzkin [Mo51]. Kelly and Moser [KeMo58] proved that $f(n)\geq\tfrac{3}{7}n$ for all $n$. This is best possible for $n=7$. Motzkin conjectured that for $n\geq 13$ there are at least $n/2$ such lines. Csima and Sawyer [CsSa93] proved a lower bound of $f(n)\geq \tfrac{6}{13}n$ when $n\geq 8$. Green and Tao [GrTa13] proved that $f(n)\geq n/2$ for sufficiently large $n$. (A proof that $f(n)\geq n/2$ for large $n$ was earlier claimed by Hansen but this proof was flawed.)

The bound of $n/2$ is best possible for even $n$, since one could take $n/2$ points on a circle and $n/2$ points at infinity. Surprisingly, Green and Tao [GrTa13] show that if $n$ is odd then $f(n)\geq 3\lfloor n/4\rfloor$.

OPEN
Is there a dense subset of $\mathbb{R}^2$ such that all pairwise distances are rational?
Conjectured by Ulam. Erdős believed there cannot be such a set. This problem is discussed in a blogpost by Terence Tao, in which he shows that there cannot be such a set, assuming the Bombieri-Lang conjecture. The same conclusion was independently obtained by Shaffaf [Sh18].

Indeed, Shaffaf and Tao actually proved that such a rational distance set must be contained in a finite union of real algebraic curves. Solymosi and de Zeeuw [SdZ10] then proved (unconditionally) that a rational distance set contained in a real algebraic curve must be finite, unless the curve contains a line or a circle.

Ascher, Braune, and Turchet [ABT20] observed that, combined, these facts imply that a rational distance set in general position must be finite (conditional on the Bombieri-Lang conjecture).

OPEN
Let $d_n=p_{n+1}-p_n$. The set of $n$ such that $d_{n+1}\geq d_n$ has density $1/2$, and similarly for $d_{n+1}\leq d_n$. Furthermore, there are infinitely many $n$ such that $d_{n+1}=d_n$.
SOLVED
Are there arbitrarily long arithmetic progressions of primes?
The answer is yes, proved by Green and Tao [GrTa08]. The stronger claim that there are arbitrarily long arithmetic progressions of consecutive primes is still open.
SOLVED - $250
Let $n\geq 1$ and \[A=\{a_1<\cdots <a_{\phi(n)}\}=\{ 1\leq m<n : (m,n)=1\}.\] Is it true that \[ \sum_{1\leq k<\phi(n)}(a_{k+1}-a_k)^2 \ll \frac{n^2}{\phi(n)}?\]
The answer is yes, as proved by Montgomery and Vaughan [MoVa86], who in fact found the correct order of magnitude with the power $2$ replaced by any $\gamma\geq 1$ (which was also asked by Erdős in [Er73]).
SOLVED
Is there a set $A\subset\mathbb{N}$ such that, for all large $N$, \[\lvert A\cap\{1,\ldots,N\}\rvert \ll N/\log N\] and such that every large integer can be written as $2^k+a$ for some $k\geq 0$ and $a\in A$?
Lorentz [Lo54] proved there is such a set with, for all large $N$, \[\lvert A\cap\{1,\ldots,N\}\rvert \ll \frac{\log\log N}{\log N}N\] The answer is yes, proved by Ruzsa [Ru72]. Ruzsa's construction is ingeniously simple: \[A = \{ 5^nm : m\geq 1\textrm{ and }5^n\geq C\log m\}+\{0,1\}\] for some large absolute constant $C>0$. That every large integer is of the form $2^k+a$ for some $a\in A$ is a consequence of the fact that $2$ is a primitive root of $5^n$ for all $n\geq 1$.

In [Ru01] Ruzsa constructs an asymptotically best possible answer to this question (a so-called 'exact additive complement'; that is, there is such a set $A$ with \[\lvert A\cap\{1,\ldots,N\}\rvert \sim \frac{N}{\log_2N}\] as $N\to \infty$.

OPEN
Let $n_1<n_2<\cdots$ be the sequence of integers which are the sum of two squares. Explore the behaviour of (i.e. find good upper and lower bounds for) the consecutive differences $n_{k+1}-n_k$.
Erdős [Er51] proved that, for infinitely many $k$, \[ n_{k+1}-n_k \gg \frac{\log n_k}{\sqrt{\log\log n_k}}.\] Richards [Ri82] improved this to \[\limsup_{k\to \infty} \frac{n_{k+1}-n_k}{\log n_k} \geq 1/4.\] The constant $1/4$ here has been improved, most lately to $0.868\cdots$ by Dietmann, Elsholtz, Kalmynin, Konyagin, and Maynard [DEKKM22]. The best known upper bound is due to Bambah and Chowla [BaCh47], who proved that \[n_{k+1}-n_k \ll n_k^{1/4}.\]
SOLVED
If $A\subseteq \mathbb{R}^d$ is any set of $2^d+1$ points then some three points in $A$ determine an obtuse angle.
For $d=2$ this is trivial. For $d=3$ there is an unpublished proof by Kuiper and Boerdijk. The general case was proved by Danzer and Grünbaum [DaGr62].
Additional thanks to: Boris Alexeev and Dustin Mixon
SOLVED
Let \[ f(\theta) = \sum_{k\geq 1}c_k e^{ik\theta}\] be a trigonometric polynomial (so that the $c_k\in \mathbb{C}$ are finitely supported) with real roots such that $\max_{\theta\in [0,2\pi]}\lvert f(\theta)\rvert=1$. Then \[\int_0^{2\pi}\lvert f(\theta)\rvert \mathrm{d}\theta \leq 4.\]
This was solved independently by Kristiansen [Kr74] (only in the case when $c_k\in\mathbb{R}$) and Saff and Sheil-Small [SSS73] (for general $c_k\in \mathbb{C}$).
Additional thanks to: Winston Heap, Vjekoslav Kovac, Karlo Lelas
SOLVED
Let $f=\sum_{n=0}^\infty a_nz^n$ be an entire function. Is it true that if \[\lim_{r\to \infty} \frac{\max_n\lvert a_nr^n\rvert}{\max_{\lvert z\rvert=r}\lvert f(z)\rvert}\] exists then it must be $0$?
Clunie (unpublished) proved this if $a_n\geq 0$ for all $n$. This was disproved in general by Clunie and Hayman [ClHa64], who showed that the limit can take any value in $[0,1/2]$.

See also [513].

SOLVED
Does there exist, for all large $n$, a polynomial $P$ of degree $n$, with coefficients $\pm 1$, such that \[\sqrt{n} \ll \lvert P(z) \rvert \ll \sqrt{n}\] for all $\lvert z\rvert =1$, with the implied constants independent of $z$ and $n$?
Originally a conjecture of Littlewood. The answer is yes (for all $n\geq 2$), proved by Balister, Bollobás, Morris, Sahasrabudhe, and Tiba [BBMST19].

See also [230].

Additional thanks to: Mehtaab Sawhney
SOLVED
Let $P(z)=\sum_{1\leq k\leq n}a_kz^k$ for some $a_k\in \mathbb{C}$ with $\lvert a_k\rvert=1$ for $1\leq k\leq n$. Does there exist a constant $c>0$ such that, for $n\geq 2$, we have \[\max_{\lvert z\rvert=1}\lvert P(z)\rvert \geq (1+c)\sqrt{n}?\]
The lower bound of $\sqrt{n}$ is trivial from Parseval's theorem. The answer is no (contrary to Erdős' initial guess). Kahane [Ka80] constructed 'ultraflat' polynomials $P(z)=\sum a_kz^k$ with $\lvert a_k\rvert=1$ such that \[P(z)=(1+o(1))\sqrt{n}\] uniformly for all $z\in\mathbb{C}$ with $\lvert z\rvert=1$, where the $o(1)$ term $\to 0$ as $n\to \infty$.

For more details see the paper [BoBo09] of Bombieri and Bourgain and where Kahane's construction is improved to yield such a polynomial with \[P(z)=\sqrt{n}+O(n^{\frac{7}{18}}(\log n)^{O(1)})\] for all $z\in\mathbb{C}$ with $\lvert z\rvert=1$.

See also [228].

Additional thanks to: Mehtaab Sawhney
SOLVED
Let $S$ be a string of length $2^k-1$ formed from an alphabet of $k$ characters. Must $S$ contain an abelian square: two consecutive blocks $x$ and $y$ such that $y$ is a permutation of $x$?
Erdős initially conjectured that the answer is yes for all $k\geq 2$, but for $k=4$ this was disproved by de Bruijn and Erdős. At least, this is what Erdős writes, but gives no construction or reference, and a simple computer search produces no such counterexamples for $k=4$. Perhaps Erdős meant $2^k$, where indeed there is an example for $k=4$: \[1213121412132124.\]

Erdős then asked if there is in fact an infinite string formed from $\{1,2,3,4\}$ which contains no abelian squares? This is equivalent to [192], and such a string was constructed by Keränen [Ke92]. The existence of this infinite string gives a negative answer to the problem for all $k\geq 4$.

Containing no abelian squares is a stronger property than being squarefree (the existence of infinitely long squarefree strings over alphabets with $k\geq 3$ characters was established by Thue).

We refer to a recent survey by Fici and Puzynina [FiPu23] for more background and related results.

OPEN
For every $c\geq 0$ the density $f(c)$ of integers for which \[\frac{p_{n+1}-p_n}{\log n}< c\] exists and is a continuous function of $c$.
OPEN
Let $f(n)$ count the number of solutions to $n=p+2^k$ for prime $p$ and $k\geq 0$. Is it true that $f(n)=o(\log n)$?
Erdős [Er50] proved that there are infinitely many $n$ such that $f(n)\gg \log\log n$. Erdős could not even prove that there do not exist infinitely many integers $n$ such that for all $2^k<n$ the number $n-2^k$ is prime (probably $n=105$ is the largest such integer).

See also [237].

SOLVED
Let $A\subseteq \mathbb{N}$ be a set such that $\lvert A\cap \{1,\ldots,N\}\rvert \gg \log N$ for all large $N$. Let $f(n)$ count the number of solutions to $n=p+a$ for $p$ prime and $a\in A$. Is it true that $\limsup f(n)=\infty$?
Erdős [Er50] proved this when $A=\{2^k : k\geq 0\}$. Solved by Chen and Ding [ChDi22].

See also [236].

SOLVED
Let $f:\mathbb{N}\to \{-1,1\}$ be a multiplicative function. Is it true that \[ \lim_{N\to \infty}\frac{1}{N}\sum_{n\leq N}f(n)\] always exists?
Wintner observed that if $f$ can take complex values on the unit circle then the limit need not exist. The answer is yes, as proved by Wirsing [Wi67], and generalised by Halász [Ha68].
OPEN
Is there an infinite set of primes $P$ such that if $\{a_1<a_2<\cdots\}$ is the set of integers divisible only by primes in $P$ then $\lim a_{i+1}-a_i=\infty$?
Originally asked to Erdős by Wintner. The limit is infinite for a finite set of primes, which follows from a theorem of Pólya.
Additional thanks to: Boris Alexeev and Dustin Mixon
OPEN - $100
Let $f(N)$ be the maximum size of $A\subseteq \{1,\ldots,N\}$ such that the sums $a+b+c$ with $a,b,c\in A$ are all distinct (aside from the trivial coincidences). Is it true that \[ f(N)\sim N^{1/3}?\]
Originally asked to Erdős by Bose. Bose and Chowla [BoCh62] provided a construction proving one half of this, namely \[(1+o(1))N^{1/3}\leq f(N).\] The best upper bound known to date is due to Green [Gr01], \[f(N) \leq ((7/2)^{1/3}+o(1))N^{1/3}\] (note that $(7/2)^{1/3}\approx 1.519\cdots$).

More generally, Bose and Chowla conjectured that the maximum size of $A\subseteq \{1,\ldots,N\}$ with all $r$-fold sums distinct (aside from the trivial coincidences) then \[\lvert A\rvert \sim N^{1/r}.\] This is known only for $r=2$ (see [30]).

Additional thanks to: Cedric Pilatte
OPEN
For every $n\geq 2$ there exist distinct integers $1\leq x<y<z$ such that \[\frac{4}{n} = \frac{1}{x}+\frac{1}{y}+\frac{1}{z}.\]
The Erdős-Straus conjecture. The existence of a representation of $4/n$ as the sum of at most four distinct unit fractions follows trivially from a greedy algorithm.

Schinzel conjectured the generalisation that, for any fixed $a$, if $n$ is sufficiently large in terms of $a$ then there exist distinct integers $1\leq x<y<z$ such that \[\frac{a}{n} = \frac{1}{x}+\frac{1}{y}+\frac{1}{z}.\]

OPEN
Let $C>1$. Does the set of integers of the form $p+\lfloor C^k\rfloor$, for some prime $p$ and $k\geq 0$, have density $>0$?
Originally asked to Erdős by Kalmár. Erdős believed the answer is yes. Romanoff [Ro34] proved that the answer is yes if $C$ is an integer.
SOLVED
Let $A\subseteq \mathbb{N}$ be an infinite set such that $\lvert A\cap \{1,\ldots,N\}\rvert=o(N)$. Is it true that \[\limsup_{N\to \infty}\frac{\lvert (A+A)\cap \{1,\ldots,N\}\rvert}{\lvert A\cap \{1,\ldots,N\}\rvert}\geq 3?\]
Erdős writes it is 'easy to see' that this holds with $3$ replaced by $2$, and that $3$ would be best possible here. We do not see an easy argument that this holds with $2$, but this follows e.g. from the main result of Mann [Ma60].

The answer is yes, proved by Freiman [Fr73].

Additional thanks to: Zachary Chase
SOLVED
Let $(a,b)=1$. Every large integer is the sum of distinct integers of the form $a^kb^l$ with $k,l\geq 0$.
Proved by Birch [Bi59].
SOLVED
Let $a_1<a_2<\cdots $ be an infinite sequence of integers such that $a_{i+1}/a_i\to 1$. If every arithmetic progression contains infinitely many integers which are the sum of distinct $a_i$ then every sufficiently large integer is the sum of distinct $a_i$.
This was disproved by Cassels [Ca60].
OPEN
Let $A\subseteq \mathbb{N}$ be such that \[\lvert A\cap [1,2x]\rvert -\lvert A\cap [1,x]\rvert \to \infty\textrm{ as }x\to \infty\] and \[\sum_{n\in A} \{ \theta n\}=\infty\] for every $\theta\in (0,1)$, where $\{x\}$ is the distance of $x$ from the nearest integer. Then every sufficiently large integer is the sum of distinct elements of $A$.
Cassels [Ca60] proved this under the alternative hypotheses \[\lvert A\cap [1,2x]\rvert -\lvert A\cap [1,x]\rvert\gg \log\log x\] and \[\sum_{n\in A} \{ \theta n\}^2=\infty\] for every $\theta\in (0,1)$.
SOLVED
Let $z_1,z_2,\ldots \in [0,1]$ be an infinite sequence, and define the discrepancy \[D_N(I) = \#\{ n\leq N : z_n\in I\} - N\lvert I\rvert.\] Must there exist some interval $I\subseteq [0,1]$ such that \[\limsup_{N\to \infty}\lvert D_N(I)\rvert =\infty?\]
The answer is yes, as proved by Schmidt [Sc68], who later showed [Sc72] that in fact this is true for all but countably many intervals of the shape $[0,x]$.

Essentially the best possible result was proved by Tijdeman and Wagner [TiWa80], who proved that, for almost all intervals of the shape $[0,x)$, we have \[\limsup_{N\to \infty}\frac{\lvert D_N([0,x))\rvert}{\log N}\gg 1.\]

Additional thanks to: Cedric Pilatte and Stefan Steinerberger
OPEN
Let $n\geq 1$ and $f(n)$ be maximal such that, for every $a_1\leq \cdots \leq a_n\in \mathbb{N}$ we have \[\max_{\lvert z\rvert=1}\left\lvert \prod_{i}(1-z^{a_i})\right\rvert\geq f(n).\] Estimate $f(n)$ - in particular, is it true that there exists some constant $c>0$ such that \[f(n) \geq \exp(n^{c})?\]
Erdős and Szekeres [ErSz59] proved that $\lim f(n)^{1/n}=1$ and $f(n)>\sqrt{2n}$. Erdős proved an upper bound of $f(n) < \exp(n^{1-c})$ for some constant $c>0$ with probabilistic methods. Atkinson [At61] showed that $f(n) <\exp(cn^{1/2}\log n)$ for some constant $c>0$.

This was improved to \[f(n) \leq \exp( cn^{1/3}(\log n)^{4/3})\] by Odlyzko [Od82].

If we denote by $f^*(n)$ the analogous quantity with the assumption that $a_1<\cdots<a_n$ then Bourgain and Chang [BoCh18] prove that \[f^*(n)< \exp(c(n\log n)^{1/2}\log\log n).\]

Additional thanks to: Zachary Chase, Stefan Steinerberger
SOLVED
How large can a union-free collection $\mathcal{F}$ of subsets of $[n]$ be? By union-free we mean there are no solutions to $A\cup B=C$ with distinct $A,B,C\in \mathcal{F}$. Must $\lvert \mathcal{F}\rvert =o(2^n)$? Perhaps even \[\lvert \mathcal{F}\rvert <(1+o(1))\binom{n}{\lfloor n/2\rfloor}?\]
The estimate $\lvert \mathcal{F}\rvert=o(2^n)$ implies that if $A\subset \mathbb{N}$ is a set of positive density then there are infinitely many distinct $a,b,c\in A$ such that $[a,b]=c$ (i.e. [487]).

Solved by Kleitman [Kl71], who proved \[\lvert \mathcal{F}\rvert <(1+o(1))\binom{n}{\lfloor n/2\rfloor}.\]

OPEN
Let $f(k)$ be the minimal $N$ such that if $\{1,\ldots,N\}$ is $k$-coloured then there is a monochromatic solution to $a+b=c$. Estimate $f(k)$. In particular, is it true that $f(k) < c^k$ for some constant $c>0$?
Schur proved that $f(k)<ek!$. See also [183].
OPEN
Prove that there exists an absolute constant $c>0$ such that, whenever $\{1,\ldots,N\}$ is $k$-coloured (and $N$ is large enough depending on $k$) then there are at least $cN$ many integers in $\{1,\ldots,N\}$ which are representable as a monochromatic sum (that is, $a+b$ where $a,b\in \{1,\ldots,N\}$ are in the same colour class).
A conjecture of Roth.
SOLVED
Let $f(k)$ be the minimum number of terms in $P(x)^2$, where $P\in \mathbb{Q}[x]$ ranges over all polynomials with exactly $k$ non-zero terms. Is it true that $f(k)\to\infty$ as $k\to \infty$?
First investigated by Rényi and Rédei [Re47]. Erdős [Er49b] proved that $f(k)<k^{1-c}$ for some $c>0$. The conjecture that $f(k)\to \infty$ is due to Erdős and Rényi.

This was solved by Schinzel [Sc87], who proved that \[f(k) > \frac{\log\log k}{\log 2}.\] In fact Schinzel proves lower bounds for the corresponding problem with $P(x)^n$ for any integer $n\geq 1$, where the coefficients of the polynomial can be from any field with zero or sufficiently large positive characteristic.

Schinzel and Zannier [ScZa09] have improved this to \[f(k) \gg \log k.\]

Additional thanks to: Stefan Steinerberger
OPEN
Let $A\subseteq \mathbb{N}$, and for each $n\in A$ choose some $X_n\subseteq \mathbb{Z}/n\mathbb{Z}$. Let \[B = \{ m\in \mathbb{N} : m\not\in X_n\pmod{n}\textrm{ for all }n\in A\}.\] Must $B$ have a logarithmic density, i.e. is it true that \[\lim_{x\to \infty} \frac{1}{\log x}\sum_{\substack{m\in B\\ m<x}}\frac{1}{m}\] exists?
Davenport and Erdős [DaEr37] proved that the answer is yes when $X_n=\{0\}$ for all $n\in A$. The problem considers logarithmic density since Besicovitch [Be34] showed examples exist without a natural density, even when $X_n=\{0\}$ for all $n\in A$.
SOLVED
Let $A\subseteq \mathbb{N}$ have positive density. Must there exist distinct $a,b,c\in A$ such that $[a,b]=c$ (where $[a,b]$ is the lowest common multiple of $a$ and $b$)?
Davenport and Erdős [DaEr37] showed that there must exist an infinite sequence $a_1<a_2\cdots$ in $A$ such that $a_i\mid a_j$ for all $i\leq j$.

This is true, a consequence of the positive solution to [447] by Kleitman [Kl71].

OPEN
Let $A$ be a finite set and \[B=\{ n \geq 1 : a\nmid n\textrm{ for all }a\in A\}.\] Is it true that, for every $m>n$, \[\frac{\lvert B\cap [1,m]\rvert }{m}< 2\frac{\lvert B\cap [1,n]\rvert}{n}?\]
The example $A=\{a\}$ and $n=2a-1$ and $m=2a$ shows that $2$ would be best possible.
OPEN
Let $A\subseteq \mathbb{N}$ be a set such that $\lvert A\cap [1,x]\rvert=o(x^{1/2})$. Let \[B=\{ n\geq 1 : a\nmid n\textrm{ for all }a\in A\}.\] If $B=\{b_1<b_2<\cdots\}$ then is it true that \[\lim \frac{1}{x}\sum_{b_i<x}(b_{i+1}-b_i)^2\] exists (and is finite)?
For example, when $A=\{p^2: p\textrm{ prime}\}$ then $B$ is the set of squarefree numbers, and the existence of this limit was proved by Erdős.

See also [208].

SOLVED
Let $A,B\subseteq \{1,\ldots,N\}$ be such that all the products $ab$ with $a\in A$ and $b\in B$ are distinct. Is it true that \[\lvert A\rvert \lvert B\rvert \ll \frac{N^2}{\log N}?\]
This would be best possible, for example letting $A=[1,N/2]\cap \mathbb{N}$ and $B=\{ N/2<p\leq N: p\textrm{ prime}\}$.

See also [425].

This is true, and was proved by Szemerédi [Sz76].

Additional thanks to: Mehtaab Sawhney
SOLVED
Let $f:\mathbb{N}\to \mathbb{R}$ be an additive function (i.e. $f(ab)=f(a)+f(b)$ whenever $(a,b)=1$). If there is a constant $c$ such that $\lvert f(n+1)-f(n)\rvert <c$ for all $n$ then must there exist some $c'$ such that \[f(n)=c'\log n+O(1)?\]
Erdős [Er46] proved that if $f(n+1)-f(n)=o(1)$ or $f(n+1)\geq f(n)$ then $f(n)=c\log n$ for some constant $c$.

This is true, and was proved by Wirsing [Wi70].

SOLVED
Let $A=\{a_1<a_2<\cdots\}\subseteq \mathbb{N}$ be infinite such that $a_{i+1}/a_i\to 1$. For any $x\geq a_1$ let \[f(x) = \frac{x-a_i}{a_{i+1}-a_i}\in [0,1),\] where $x\in [a_i,a_{i+1})$. Is it true that, for almost all $\alpha$, the sequence $f(\alpha n)$ is uniformly distributed in $[0,1)$?
For example if $A=\mathbb{N}$ then $f(x)=\{x\}$ is the usual fractional part operator.

A problem due to Le Veque [LV53], who proved it in some special cases.

This is false is general, as shown by Schmidt [Sc69].

SOLVED
Does there exist a $k$ such that every sufficiently large integer can be written in the form \[\prod_{i=1}^k a_i - \sum_{i=1}^k a_i\] for some integers $a_i\geq 2$?
Erdős attributes this question to Schinzel. Eli Seamans has observed that the answer is yes (with $k=2$) for a very simple reason: \[n = 2(n+2)-(2+(n+2)).\] There may well have been some additional constraint in the problem as Schinzel posed it, but [Er61] does not record what this is.
Additional thanks to: Eli Seamans
OPEN
Let $A\subset \mathbb{C}$ be a finite set of fixed size, for any $k\geq 1$ let \[A_k = \{ z_1+\cdots+z_k : z_i\in A\textrm{ distinct}\}.\] For $k>2$ does the set $A_k$ (together with the size of $A$) uniquely determine the set $A$?
A problem of Selfridge and Straus [SeSt58], who prove that this is true if $k=2$ and $\lvert A\rvert \neq 2^l$ (for $l\geq 0$). On the other hand, there are examples with two distinct $A,B$ both of size $2^l$ such that $A_2=B_2$.

More generally, they prove that $A$ is uniquely determined by $A_k$ if $n$ is divisible by a prime greater than $k$. Selfridge and Straus sound more cautious than Erdős, and it may well be that for all $k>2$ there exist $A,B$ of the same size with identical $A_k=B_k$.

(In [Er61] Erdős states this problem incorrectly, replacing sums with products. This product formulation is easily seen to be false, as observed by Steinerberger: consider the case $k=3$ and subsets of the 6th roots of unity corresponding to $\{0,1,2,4\}$ and $\{0,2,3,4\}$ (as subsets of $\mathbb{Z}/6\mathbb{Z}$). The correct problem statement can be found in the paper of Selfridge and Straus that Erdős cites.)

Additional thanks to: Stefan Steinerberger
OPEN
Let $\alpha,\beta \in \mathbb{R}$. Is it true that \[\liminf_{n\to \infty} n \| n\alpha \| \| n\beta\| =0\] where $\|x\|$ is the distance from $x$ to the nearest integer?
The infamous Littlewood conjecture.
SOLVED
Let $\alpha \in \mathbb{R}$ be irrational and $\epsilon>0$. Are there positive integers $x,y,z$ such that \[\lvert x^2+y^2-z^2\alpha\rvert <\epsilon?\]
Originally a conjecture due to Oppenheim. Davenport and Heilbronn [DaHe46] solve the analogous problem for quadratic forms in 5 variables.

This is true, and was proved by Margulis [Ma89].

Additional thanks to: Zachary Chase
SOLVED
How many antichains in $[n]$ are there? That is, how many families of subsets of $[n]$ are there such that, if $\mathcal{F}$ is such a family and $A,B\in \mathcal{F}$, then $A\not\subseteq B$?
Sperner's theorem states that $\lvert \mathcal{F}\rvert \leq \binom{n}{\lfloor n/2\rfloor}$. This is also known as Dedekind's problem.

Resolved by Kleitman [Kl69], who proved that the number of such families is \[2^{(1+o(1))\binom{n}{\lfloor n/2\rfloor}}.\]

SOLVED
Let $z_1,\ldots,z_n\in\mathbb{C}$. Let $D$ be an arbitrary disc of radius $1$. Is it true that the number of sums of the shape \[\sum_{i=1}^n\epsilon_iz_i \textrm{ for }\epsilon_i\in \{-1,1\}\] which lie in $D$ is at most $\binom{n}{\lfloor n/2\rfloor}$?
A strong form of the Littlewood-Offord problem. Erdős proved this is true if $z_i\in\mathbb{R}$, and for general $z_i\in\mathbb{C}$ proved a weaker upper bound of \[\ll \frac{2^n}{\sqrt{n}}.\] This was solved in the affirmative by Kleitman [Kl65], who also later generalised this to arbitrary Hilbert spaces [Kl70].
SOLVED
Let $M=(a_{ij})$ be a real $n\times n$ doubly stochastic matrix (i.e. the entries are non-negative and each column and row sums to $1$). Does there exist some $\sigma\in S_n$ such that \[\prod_{1\leq i\leq n}a_{i\sigma(i)}\geq n^{-n}?\]
A weaker form of the conjecture of van der Waerden, which states that \[\mathrm{perm}(M)=\sum_{\sigma\in S_n}\prod_{1\leq i\leq n}a_{i\sigma(i)}\geq n^{-n}n!\] with equality if and only if $a_{ij}=1/n$ for all $i,j$.

This conjecture is true, and was proved by Marcus and Minc [MaMi62].

Erdős also conjectured the even weaker fact that there exists some $\sigma\in S_n$ such that $a_{i\sigma(i)}\neq 0$ for all $i$ and \[\sum_{i}a_{i\sigma(i)}\geq 1.\] This weaker statement was proved by Marcus and Ree [MaRe59].

van der Waerden's conjecture itself was proved by Gyires [Gy80], Egorychev [Eg81], and Falikman [Fa81].

OPEN - $500
What is $\mathrm{ex}_3(n,K_4^3)$? That is, the largest number of $3$-edges which can placed on $n$ vertices so that there exists no $K_4^3$, a set of 4 vertices which is covered by all 4 possible $3$-edges.
A problem of Turán. Turán observed that dividing the vertices into three equal parts $X_1,X_2,X_3$, and taking the edges to be those triples that either have exactly one vertex in each part or two vertices in $X_i$ and one vertex in $X_{i+1}$ (where $X_4=X_1$) shows that \[\mathrm{ex}_3(n,K_4^3)\geq\left(\frac{5}{9}+o(1)\right)\binom{n}{3}.\] This is probably the truth. The current best upper bound is \[\mathrm{ex}_3(n,K_4^3)\leq 0.5611666\binom{n}{3},\] due to Razborov [Ra10].

See also [712] for the general case.

OPEN
For every $x\in\mathbb{R}$ let $A_x\subset \mathbb{R}$ be a bounded set with outer measure $<1$. Must there exist an infinite independent set, that is, some infinite $X\subseteq \mathbb{R}$ such that $x\not\in A_y$ for all $x\neq y\in X$?

If the sets $A_x$ are closed and have measure $<1$, then must there exist an independent set of size $3$?

Erdős and Hajnal [ErHa60] proved the existence of arbitrarily large finite independent sets (under the assumptions in the first problem).

Erdős writes in [Er61] that Gladysz has proved the existence of an independent set of size $2$ in the second question, but I cannot find a reference.

Hechler [He72] has shown the answer to the first question is no, assuming the continuum hypothesis.

SOLVED
What is the size of the largest $A\subseteq \mathbb{R}^n$ such that there are only two distinct distances between elements of $A$? That is, \[\# \{ \lvert x-y\rvert : x\neq y\in A\} = 2.\]
Asked to Erdős by Coxeter. Erdős thought he could show that $\lvert A\rvert \leq n^{O(1)}$, but later discovered a mistake in his proof, and his proof only gave $\leq \exp(n^{1-o(1)})$.

Bannai, Bannai, and Stanton [BBS83] have proved that \[\lvert A\rvert \leq \binom{n+2}{2}.\] A simple proof of this upper bound was given by Petrov and Pohoata [PePo21].

Shengtong Zhang has observed that a simple lower bound of $\binom{n}{2}$ is given by considering all points with exactly two coordinates equal to $1$ and all others equal to $0$.

Additional thanks to: Ryan Alweiss, Jordan Ellenberg, Shengtong Zhang
OPEN
What is the size of the largest $A\subseteq \mathbb{R}^n$ such that every three points from $A$ determine an isosceles triangle? That is, for any three points $x,y,z$ from $A$, at least two of the distances $\lvert x-y\rvert,\lvert y-z\rvert,\lvert x-z\rvert$ are equal.
When $n=2$ the answer is $6$ (due to Kelly [ErKe47]). When $n=3$ the answer is $8$ (due to Croft [Cr62]). The best upper bound known in general is due to Blokhuis [Bl84] who showed that \[\lvert A\rvert \leq \binom{n+2}{2}.\]

Alweiss has observed a lower bound of $\binom{n+1}{2}$ follows from considering the subset of $\mathbb{R}^{n+1}$ formed of all vectors $e_i+e_j$ where $e_i,e_j$ are distinct coordinate vectors. This set can be viewed as a subset of some $\mathbb{R}^n$, and is easily checked to have the required property.

The fact that the truth for $n=3$ is $8$ suggests that neither of these bounds is the truth.

Additional thanks to: Ryan Alweiss
SOLVED
Let $\alpha_n$ be the infimum of all $0\leq \alpha\leq \pi$ such that in every set $A\subset \mathbb{R}^2$ of size $n$ there exist three distinct points $x,y,z\in A$ such that the angle determined by $xyz$ is at least $\alpha$. Determine $\alpha_n$.
Blumenthal's problem. Szekeres [Sz41] showed that \[\alpha_{2^n+1}> \pi \left(1-\frac{1}{n}+\frac{1}{n(2^n+1)^2}\right)\] and \[\alpha_{2^n}\leq \pi\left(1-\frac{1}{n}\right).\] Erdős and Szekeres [ErSz60] showed that \[\alpha_{2^n}=\alpha_{2^n-1}= \pi\left(1-\frac{1}{n}\right),\] and suggested that perhaps $\alpha_{N}=\pi(1-1/n)$ for $2^{n-1}<N\leq 2^n$. This was disproved by Sendov [Se92].

Sendov [Se93] provided the definitive answer, proving that $\alpha_N=\pi(1-1/n)$ for $2^{n-1}+2^{n-3}<N\leq 2^n$ and $\alpha_N=\pi(1-\frac{1}{2n-1})$ for $2^{n-1}<N\leq 2^{n-1}+2^{n-3}$.

SOLVED
Is every set of diameter $1$ in $\mathbb{R}^n$ the union of at most $n+1$ sets of diameter $<1$?
Borsuk's problem. This is trivially true for $n=1$ and easy for $n=2$. For $n=3$ it is true, which was proved by Eggleston [Eg55].

The answer is in fact no in general, as shown by Kahn and Kalai [KaKa93], who proved that it is false for $n>2014$. The current smallest $n$ where Borsuk's conjecture is known to be false is $n=64$, a result of Brouwer and Jenrich [BrJe14].

If $\alpha(n)$ is the smallest number of pieces of diameter $<1$ required (so Borsuk's original conjecture was that $\alpha(n)=n+1$) then Kahn and Kalai's construction shows that $\alpha(n)\geq (1.2)^{\sqrt{n}}$. The best upper bound, due to Schramm [Sc88], is that \[\alpha(n) \leq ((3/2)^{1/2}+o(1))^{n}.\]

OPEN
What is the minimum number of circles determined by any $n$ points in $\mathbb{R}^2$, not all on a circle?
OPEN
Let $\alpha(n)$ be such that every set of $n$ points in the unit circle contains three points which determine a triangle of area at most $\alpha(n)$. Estimate $\alpha(n)$.
Heilbronn's triangle problem. It is trivial that $\alpha(n) \ll 1/n$. Erdős observed that $\alpha(n)\gg 1/n^2$. The current best bounds are \[\frac{\log n}{n^2}\ll \alpha(n) \ll \frac{1}{n^{8/7+1/2000}}.\] The lower bound is due to Komlós, Pintz, and Szemerédi [KPS82]. The upper bound is due to Cohen, Pohoata, and Zakharov [CPZ23] (improving on an exponent of $8/7$ due to Komlós, Pintz, and Szemerédi [KPS81]).
OPEN
What is the chromatic number of the plane? That is, what is the smallest number of colours required to colour $\mathbb{R}^2$ such that no two points of the same colour are distance $1$ apart?
The Hadwiger-Nelson problem. Let $\chi$ be the chromatic number of the plane. An equilateral triangle trivially shows that $\chi\geq 3$. There are several small graphs that show $\chi\geq 4$ (in particular the Moser spindle and Golomb graph). The best bounds currently known are \[5 \leq \chi \leq 7.\] The lower bound is due to de Grey [dG18]. The upper bound can be seen by colouring the plane by tesselating by hexagons with diameter slightly less than $1$.

See also [704], [705], and [706].

OPEN
Let $f(z)\in\mathbb{C}[z]$ be a monic non-constant polynomial. Can the set \[\{ z\in \mathbb{C} : \lvert f(z)\rvert \leq 1\}\] be covered by a set of circles the sum of whose radii is $\leq 2$?
Cartan proved this is true with $2$ replaced by $2e$, which was improved to $2.59$ by Pommerenke [Po61]. Pommerenke [Po59] proved that $2$ is achievable if the set is connected (in fact the entire set is covered by a single circle with radius $2$).
OPEN
If $A\subset \mathbb{Z}$ is a finite set of size $N$ then is there some absolute constant $c>0$ and $\theta$ such that \[\sum_{n\in A}\cos(n\theta) < -cN^{1/2}?\]
Chowla's cosine problem. The best known bound currently, due to Ruzsa [Ru04] (improving on an earlier result of Bourgain [Bo86]), replaces $N^{1/2}$ by \[\exp(O(\sqrt{\log N}).\] The example $A=B-B$, where $B$ is a Sidon set, shows that $N^{1/2}$ would be the best possible here.
OPEN
Let $f(z)\in \mathbb{C}[z]$ be a monic polynomial of degree $n$ and \[A = \{ z\in \mathbb{C} : \lvert f(z)\rvert\leq 1\}.\] Is it true that, for every such $f$ and constant $c>0$, the set $A$ can have at most $O_c(1)$ many components of diameter $>1+c$ (where the implied constant is in particular independent of $n$)?
SOLVED
Is it true that, if $A\subset \mathbb{Z}$ is a finite set of size $N$, then \[\int_0^1 \left\lvert \sum_{n\in A}e(n\theta)\right\rvert \mathrm{d}\theta \gg \log N,\] where $e(x)=e^{2\pi ix }$?
Littlewood's conjecture, proved independently by Konyagin [Ko81] and McGehee, Pigno, and Smith [MPS81].
OPEN
Let $f=\sum_{n=0}^\infty a_nz^n$ be an entire function. What is the greatest possible value of \[\liminf_{r\to \infty} \frac{\max_n\lvert a_nr^n\rvert}{\max_{\lvert z\rvert=r}\lvert f(z)\rvert}?\]
It is trivial that this value is in $[1/2,1)$. Kövári (unpublished) observed that it must be $>1/2$. Clunie and Hayman [ClHa64] showed that it is $\leq 2/\pi-c$ for some absolute constant $c>0$. Some other results on this quantity were established by Gray and Shah [GrSh63].

See also [227].

OPEN
Let $f(z)$ be an entire function. Does there exist a path $L$ so that, for every $n$, \[\lvert f(z)/z^n\rvert \to \infty\] as $z\to \infty$ along $L$?

Can the length of this path be estimated in terms of $M(r)=\max_{\lvert z\rvert=r}\lvert f(z)\rvert$? Does there exist a path along which $\lvert f(z)\rvert$ tends to $\infty$ faster than a fixed function of $M(r)$ (such that $M(r)^\epsilon$)?

Boas (unpublished) has proved the first part, that such a path must exist.
OPEN
Let $f(z)$ be an entire function, not a polynomial. Does there exist a path $C$ such that, for every $\lambda>0$, the integral \[\int_C \lvert f(z)\rvert^{-\lambda} \mathrm{d}z\] is finite?
Huber [Hu57] proved that for every $\lambda>0$ there is a path $C_\lambda$ such that this integral is finite.
OPEN
Let $f(z)=\sum_{k\geq 1}a_k z^{n_k}$ be an entire function of finite order such that $\lim n_k/k=\infty$. Let $M(r)=\max_{\lvert z\rvert=r}\lvert f(z)\rvert$ and $m(r)=\max_n \lvert a_nr^n\rvert$. Is it true that \[\limsup\frac{\log m(r)}{\log M(r)}=1?\]
A problem of Pólya. Results of Wiman [Wi14] imply that if $(n_{k+1}-n_k)^2>n_k$ then $\limsup \frac{m(r)}{M(r)}=1$. Erdős and Macintyre [ErMa54] proved this under the assumption that \[\sum_{k\geq 2}\frac{1}{n_{k+1}-n_k}<\infty.\]
OPEN
Let $f(z)=\sum_{k=1}^\infty a_kz^{n_k}$ be an entire function. Is it true that if $n_k/k\to \infty$ then $f(z)$ assumes every value infinitely often?
A conjecture of Fejér and Pólya. Fejér [Fe08] proved that if $\sum\frac{1}{n_k}<\infty$ then $f(z)$ assumes every value at least once, and Biernacki [Bi28] showed that this holds under the assumption that $n_k/k\to \infty$.
OPEN
Let $A_1,A_2,\ldots$ be sets of complex numbers, none of which has a limit point in $\mathbb{C}$. Does there exist an entire function $f(z)$ and a sequence $n_1<n_2<\cdots$ such that $f^{(n_k)}$ vanishes on $A_k$ for all $k\geq 1$?
SOLVED
Let $z_1,\ldots,z_n\in \mathbb{C}$ with $z_1=1$. Must there exist an absolute constant $c>0$ such that \[\max_{1\leq k\leq n}\left\lvert \sum_{i}z_i^k\right\rvert>c?\]
A problem of Turán, who proved that this maximum is $\gg 1/n$. This was solved by Atkinson [At61b], who showed that $c=1/6$ suffices. This has been improved by Biró, first to $c=1/2$ [Bi94], and later to an absolute constant $c>1/2$ [Bi00]. Based on computational evidence it is likely that the optimal value of $c$ is $\approx 0.7$.
SOLVED
Let $f$ be a Rademacher multiplicative function: a random $\{-1,0,1\}$-valued multiplicative function, where for each prime $p$ we independently choose $f(p)\in \{-1,1\}$ uniformly at random, and for square-free integers $n$ we extend $f(p_1\cdots p_r)=f(p_1)\cdots f(p_r)$ (and $f(n)=0$ if $n$ is not squarefree). Does there exist some constant $c>0$ such that, almost surely, \[\limsup_{N\to \infty}\frac{\sum_{m\leq N}f(m)}{\sqrt{N\log\log N}}=c?\]
Note that if we drop the multiplicative assumption, and simply assign $f(m)=\pm 1$ at random, then this statement is true (with $c=\sqrt{2}$), the law of the iterated logarithm.

Wintner [Wi44] proved that, almost surely, \[\sum_{m\leq N}f(m)\ll N^{1/2+o(1)},\] and Erdős improved the right-hand side to $N^{1/2}(\log N)^{O(1)}$. Lau, Tenenbaum, and Wu [LTW13] have shown that, almost surely, \[\sum_{m\leq N}f(m)\ll N^{1/2}(\log\log N)^{2+o(1)}.\] Harper [Ha13] has shown that the sum is almost surely not $O(N^{1/2}/(\log\log N)^{5/2+o(1)})$, and conjectured that in fact Erdős' conjecture is false, and almost surely \[\sum_{m\leq N}f(m) \ll N^{1/2}(\log\log N)^{1/4+o(1)}.\] This was proved by Caich [Ca23].

Additional thanks to: Mehtaab Sawhney
OPEN
For any $t\in (0,1)$ let $t=\sum_{k=1}^\infty \epsilon_k(t)2^{-k}$ (where $\epsilon_k(t)\in \{0,1\}$). Let $R_n(t)$ denote the number of real roots of $\sum_{1\leq k\leq n}\epsilon_k(t)z^k$. Is it true that, for almost all $t\in (0,1)$, we have \[\lim_{n\to \infty}\frac{R_n(t)}{\log n}=\frac{\pi}{2}?\]
Erdős and Offord [EO56] showed that the number of real roots of a random degree $n$ polynomial with $\pm 1$ coefficients is $(\frac{2}{\pi}+o(1))\log n$.

See also [522].

OPEN
Is it true that all except $o(2^n)$ many polynomials of degree $n$ with $\pm 1$-valued coefficients have $(\frac{1}{2}+o(1))n$ many roots in $\{ z\in \mathbb{C} : \lvert z\rvert \leq 1\}$?

For any $t\in (0,1)$ let $t=\sum_{k=1}^\infty \epsilon_k(t)2^{-k}$ (where $\epsilon_k(t)\in \{0,1\}$). If $S_n(t)$ is the number of roots of $\sum_{1\leq k\leq n}\epsilon_k(t)z^k$ in $\lvert z\rvert \leq1$ then is it true that, for almost all $t\in (0,1)$, \[\lim_{n\to \infty}\frac{S_n(t)}{n}=\frac{1}{2}?\]

Erdős and Offord [EO56] showed that the number of real roots of a random degree $n$ polynomial with $\pm 1$ coefficients is $(\frac{2}{\pi}+o(1))\log n$.

See also [521].

Additional thanks to: Zachary Chase
OPEN
For any $t\in (0,1)$ let $t=\sum_{k=1}^\infty \epsilon_k(t)2^{-k}$ (where $\epsilon_k(t)\in \{0,1\}$). Does there exist some constant $C>0$ such that, for almost all $t\in (0,1)$, \[\max_{\lvert z\rvert=1}\left\lvert \sum_{k\leq n}\epsilon_k(t)z^k\right\rvert=(C+o(1))\sqrt{n\log n}?\]
Salem and Zygmund [SZ54] proved that $\sqrt{n\log n}$ is the right order of magnitude, but not an asymptotic.
OPEN
For any $t\in (0,1)$ let $t=\sum_{k=1}^\infty \epsilon_k(t)2^{-k}$ (where $\epsilon_k(t)\in \{0,1\}$). What is the correct order of magnitude (for almost all $t\in(0,1)$) for \[M_n(t)=\max_{x\in [0,1]}\left\lvert \sum_{k\leq n}\epsilon_k(t)x^k\right\rvert?\]
A problem of Salem and Zygmund [SZ54]. Chung showed that, for almost all $t$, there exist infinitely many $n$ such that \[M_n(t) \ll \left(\frac{n}{\log\log n}\right)^{1/2}.\] Erdős (unpublished) showed that for almost all $t$ and every $\epsilon>0$ we have $\lim_{n\to \infty}M_n(t)/n^{1/2-\epsilon}=\infty$.
SOLVED
Is it true that all except at most $o(2^n)$ many degree $n$ polynomials with $\pm 1$-valued coefficients $f(z)$ have $\lvert f(z)\rvert <1$ for some $\lvert z\rvert=1$? What is the behaviour of \[m(f)=\min_{\lvert z\rvert=1}\lvert f(z)\rvert?\]
Random polynomials with independently identically distributed coefficients are sometimes called Kac polynomials - this problem considers the case of Radamacher coefficients, i.e. independent uniform $\pm 1$ values. The first problem asks whether $m(f)<1$ almost surely. Littlewood [Li66] conjectured that the stronger $m(f)=o(1)$ holds almost surely.

The answer to both questions is yes: Littlewood's conjecture was solved by Kashin [Ka87], and Konyagin [Ko94] improved this to show that $m(f)\leq n^{-1/2+o(1)}$ almost surely. This is essentially best possible, since Konyagin and Schlag [KoSc99] proved that for any $\epsilon>0$ \[\limsup_{n\to \infty} \mathbb{P}(m(f) \leq \epsilon n^{-1/2})\ll \epsilon.\] Cook and Nguyen [CoNg21] have identified the limiting distribution, proving that for any $\epsilon>0$ \[\lim_{n\to \infty} \mathbb{P}(m(f) > \epsilon n^{-1/2}) = e^{-\epsilon \lambda}\] where $\lambda$ is an explicit constant.

Additional thanks to: Mehtaab Sawhney
SOLVED
Let $a_n\geq 0$ with $a_n\to 0$ and $\sum a_n=\infty$. Find a necessary and sufficient condition on the $a_n$ such that, if we choose (independently and uniformly) random arcs on the unit circle of length $a_n$, then all the circle is covered with probability $1$.
A problem of Dvoretzky [Dv56]. It is easy to see that (under the given conditions alone) almost all the circle is covered with probability $1$.

Kahane [Ka59] showed that $a_n=\frac{1+c}{n}$ with $c>0$ has this property, which Erd\H{s} (unpublished) improved to $a_n=\frac{1}{n}$. Erd\{o}s also showed that $a_n=\frac{1-c}{n}$ with $c>0$ does not have this property.

Solved by Shepp [Sh72], who showed that a necessary and sufficient condition is that \[\sum_n \frac{e^{a_1+\cdots+a_n}}{n^2}=\infty.\]

OPEN
Let $a_n\in \mathbb{R}$ be such that $\sum_n \lvert a_n\rvert^2=\infty$ and $\lvert a_n\rvert=o(1/\sqrt{n})$. Is it true that, for almost all $\epsilon_n=\pm 1$, there exists some $z$ with $\lvert z\rvert=1$ (depending on the choice of signs) such that \[\sum_n \epsilon_n a_n z^n\] converges?
It is unclear to me whether Erdős also intended to assume that $\lvert a_{n+1}\rvert\leq \lvert a_n\rvert$.

It is 'well known' that, for almost all $\epsilon_n=\pm 1$, the series diverges for almost all $\lvert z\rvert=1$ (assuming only $\sum \lvert a_n\rvert^2=\infty$).

Dvoretzky and Erdős [DE59] showed that if $\lvert a_n\rvert >c/\sqrt{n}$ then, for almost all $\epsilon_n=\pm 1$, the series diverges for all $\lvert z\rvert=1$.

OPEN
Let $f(n,k)$ count the number of self-avoiding walks of $n$ steps (beginning at the origin) in $\mathbb{Z}^k$ (i.e. those walks which do not intersect themselves). Determine \[C_k=\lim_{n\to\infty}f(n,k)^{1/n}.\]
The constant $C_k$ is sometimes known as the connective constant. Hammersley and Morton [HM54] showed that this limit exists, and it is trivial that $k\leq C_k\leq 2k-1$.

Kesten [Ke63] proved that $C_k=2k-1-1/2k+O(1/k^2)$, and more precise asymptotics are given by Clisby, Liang, and Slade [CLS07].

Conway and Guttmann [CG93] showed that $C_2\geq 2.62$ and Alm [Al93] showed that $C_2\leq 2.696$.

OPEN
Let $d_k(n)$ be the expected distance from the origin after taking $n$ random steps from the origin in $\mathbb{Z}^k$ (conditional on no self intersections). Is it true that \[\lim_{n\to \infty}\frac{d_2(n)}{n^{1/2}}= \infty?\] Is it true that \[d_k(n)\ll n^{1/2}\] for $k\geq 3$?
OPEN - $500
Given $n$ distinct points $A\subset\mathbb{R}^2$ must there be a point $x\in A$ such that \[\#\{ d(x,y) : y \in A\} \gg n^{1-o(1)}?\] Or even $\gg n/\sqrt{\log n}$?
The pinned distance problem, a stronger form of [89]. The example of an integer grid show that $n/\sqrt{\log n}$ would be best possible.

It may be true that there are $\gg n$ many such points, or that this is true on average. In [Er97e] Erdős offers \$500 for a solution to this problem, but it is unclear whether he intended this for proving the existence of a single such point or for $\gg n$ many such points.

In [Er97e] Erdős wrote that he initially 'overconjectured' and thought that the answer to this problem is the same as for the number of distinct distances between all pairs (see [89]), but this was disproved by Harborth. It could be true that the answers are the same up to an additive factor of $n^{o(1)}$.

The best known bound is \[\gg n^{c-o(1)},\] due to Katz and Tardos [KaTa04], where \[c=\frac{48-14e}{55-16e}=0.864137\cdots.\]