An alternative, simpler, proof was given by Balister, Bollobás, Morris, Sahasrabudhe, and Tiba [BBMST22], who improved the upper bound on the smallest modulus to $616000$.
The best known lower bound is a covering system whose minimum modulus is $42$, due to Owens [Ow14].
See also [687].
Indeed, the answer is yes, as proved by Banks, Freiberg, and Turnage-Butterbaugh [BFT15] with an application of the Maynard-Tao machinery concerning bounded gaps between primes [Ma15]. They in fact prove that, for any $m\geq 1$, there are infinitely many $n$ such that \[d_n<d_{n+1}<\cdots <d_{n+m}\] and infinitely many $n$ such that \[d_n> d_{n+1}>\cdots >d_{n+m}.\]
The values of the sum are listed at A074741 on the OEIS.
The sequence of values of $f(n)$ is A109925 on the OEIS.
See also [237].