Logo
All Solved All Open Random Solved Random Open
0 solved out of 2 shown
$50
Is there an infinite Sidon set $A\subset \mathbb{N}$ such that \[\lvert A\cap \{1\ldots,N\}\rvert \gg_\epsilon N^{1/2-\epsilon}\] for all $\epsilon>0$?
The trivial greedy construction achieves $\gg N^{1/3}$. The current best bound of $\gg N^{\sqrt{2}-1+o(1)}$ is due to Ruzsa [Ru98]. (Erdős [Er73] had offered \$25 for any construction which achieves $N^{c}$ for some $c>1/3$.) Erdős proved that for every infinite Sidon set $A$ we have \[\liminf \frac{\lvert A\cap \{1,\ldots,N\}\rvert}{N^{1/2}}=0,\] and also that there is a set $A\subset \mathbb{N}$ with $\lvert A\cap \{1\ldots,N\}\rvert \gg_\epsilon N^{1/2-\epsilon}$ such that $1_A\ast 1_A(n)=O(1)$.
$50
Let $A,B\subset \mathbb{R}^2$ be disjoint sets of size $n$ and $n-3$ respectively, with not all of $A$ contained on a single line. Is there a line which contains at least two points from $A$ and no points from $B$?
Conjectured by Erdős and Purdy [ErPu95] (the prize is for a proof or disproof). A construction of Hickerson shows that this fails with $n-2$. A result independently proved by Beck [Be83] and Szemerédi and Trotter [SzTr83] implies it is true with $n-3$ replaced by $cn$ for some constant $c>0$.