Is it true that $f(n)\leq n^{o(1)}$? Or even $f(n) < n^{c/\log\log n}$ for some constant $c>0$?
Is it true that $f(n)\leq n^{o(1)}$? Or even $f(n) < n^{c/\log\log n}$ for some constant $c>0$?
The set of lattice points imply $f(n) > n^{c/\log\log n}$ for some constant $c>0$. Erdős offered \$500 for a proof that $f(n) \leq n^{o(1)}$ but only \$100 for a counterexample.
It is trivial that $f(n) \ll n^{1/2}$. A result of Pach and Sharir implies $f(n) \ll n^{2/5}$.
Fishburn (personal communication to Erdős) proved that $6$ is the smallest $n$ such that $f(n)=3$ and $8$ is the smallest $n$ such that $f(n)=4$, and suggested that the lattice points may not be best example.
See also [754].