Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation. - $500
Does every set of $n$ distinct points in $\mathbb{R}^2$ contain at most $n^{1+O(1/\log\log n)}$ many pairs which are distance 1 apart?
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
The unit distance problem. In [Er94b] Erdős dates this conjecture to 1946. In [Er82e] he offers \$300 for the upper bound $n^{1+o(1)}$.

This would be the best possible, as is shown by a set of lattice points. It is easy to show that there are $O(n^{3/2})$ many such pairs. The best known upper bound is $O(n^{4/3})$, due to Spencer, Szemerédi, and Trotter [SST84]. In [Er83c] and [Er85] Erdős offers \$250 for an upper bound of the form $n^{1+o(1)}$.

Part of the difficulty of this problem is explained by a result of Valtr (see [Sz16]), who constructed a metric on $\mathbb{R}^2$ and a set of $n$ points with $\gg n^{4/3}$ unit distance pairs (with respect to this metric). The methods of the upper bound proof of Spencer, Szemerédi, and Trotter [SST84] generalise to include this metric. Therefore to prove an upper bound better than $n^{4/3}$ some special feature of the Euclidean metric must be exploited.

See a survey by Szemerédi [Sz16] for further background and related results.

See also [92], [96], [605], and [956]. The higher dimensional generalisation is [1085].

View the LaTeX source

This page was last edited 15 October 2025.

External data from the database - you can help update this
Formalised statement? Yes
Related OEIS sequences: A186705

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #90, https://www.erdosproblems.com/90, accessed 2025-11-16