Logo
All Random Solved Random Open
OPEN
Let $f(n)$ be an additive function (so that $f(ab)=f(a)+f(b)$ if $(a,b)=1$) such that \[\limsup_{p,k}\frac{f(p^k)}{\log p^k}=\infty.\] Is it true that \[\limsup_n \frac{f(n+1)-f(n)}{\log n}=\infty?\] Or perhaps even \[\limsup_n \frac{f(n+1)}{f(n)}=\infty?\]
A conjecture of Erdős and Wirsing. Wirsing [Wi70] proved (see [491]) that if $\lvert f(n+1)-f(n)\rvert \leq C$ then $f(n)=c\log n+O(1)$ for some constant $c$.

Erdős suggests that for simplicity one might first assume that $f(p^k)=f(p)$ or $f(p^k)=kf(p)$.