Logo
All Random Solved Random Open
OPEN
For integer $n\geq 1$ we define the factor difference set of $n$ by \[D(n) = \{\lvert a-b\rvert : n=ab\}.\] Is it true that, for every $k\geq 1$, there exist integers $N_1<\cdots<N_k$ such that \[\lvert \cap_i D(N_i)\rvert \geq k?\]
A question of Erdős and Rosenfeld [ErRo97], who proved this is true for $k=2$. Jiménez-Urroz [Ji99] proved this for $k=3$ and Bremner [Br19] proved this for $k=4$.