Is it true that if \[\lvert A\rvert >\lfloor\tfrac{n}{2}\rfloor+\lfloor\tfrac{n}{3}\rfloor-\lfloor\tfrac{n}{6}\rfloor\] then $G(A)$ contains all odd cycles of length $\leq \frac{n}{3}+1$?
Is it true that, for every $\ell\geq 1$, if $n$ is sufficiently large and \[\lvert A\rvert >\lfloor\tfrac{n}{2}\rfloor+\lfloor\tfrac{n}{3}\rfloor-\lfloor\tfrac{n}{6}\rfloor\] then $G(A)$ must contain a complete $(1,\ell,\ell)$ triparite graph on $2\ell+1$ vertices?