Logo
All Random Solved Random Open
SOLVED - $100
For any $\epsilon>0$ there exists $\delta=\delta(\epsilon)>0$ such that if $G$ is a graph on $n$ vertices with no independent set or clique of size $\geq \epsilon\log n$ then $G$ contains an induced subgraph with $m$ edges for all $m\leq \delta n^2$.
Conjectured by Erdős and McKay, who proved it with $\delta n^2$ replaced by $\delta (\log n)^2$. Solved by Kwan, Sah, Sauermann, and Sawhney [KSSS22]. Erdős' original formulation also had the condition that $G$ has $\gg n^2$ edges, but an old result of Erdős and Szemerédi says that this follows from the other condition anyway.
Additional thanks to: Zachary Hunter and Mehtaab Sawhney