Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation.
Let $r\geq 2$ and let $A\subseteq \{1,\ldots,N\}$ be a set of maximal size such that there are at most $r$ solutions to $n=a+b$ with $a\leq b$ for any $n$. (That is, $A$ is a $B_2[r]$ set.)

Similarly, let $B\subseteq \{1,\ldots,N\}$ be a set of maximal size such that there are at most $r$ solutions to $n=a-b$ for any $n$.

If $\lvert A\rvert\sim c_rN^{1/2}$ as $N\to \infty$ and $\lvert B\rvert \sim c_r'N^{1/2}$ as $N\to \infty$ then is it true that $c_r\neq c_r'$ for $r\geq 2$? Is it true that $c_r'<c_r$?
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
According to Erdős, first formulated in conversation with Berend, and later independently reformulated with Freud.

It is true that $c_1=c_1'$, and the classical bound on the size of Sidon sets (see [30]) implies $c_1=c_1'=1$.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #863, https://www.erdosproblems.com/863, accessed 2025-11-16