Dual View Random Solved Random Open
VERIFIABLE Open, but could be proved with a finite example.
Does there exist a $3$-critical $3$-uniform hypergraph in which every vertex has degree $\geq 7$?
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
A problem of Erdős and Lovász.

They do not specify what is meant by $3$-critical. One definition in the literature is: a hypergraph is $3$-critical if there is a set of $3$ vertices which intersects every edge, but no such set of size $2$, and yet for any edge $e$ there is a pair of vertices which intersects every edge except $e$. Raphael Steiner observes that a $3$-critical hypergraph in this sense has bounded size, so this problem would be a finite computation, and perhaps is not what they meant.

An alternative definition is that a hypergraph is $3$-critical if it has chromatic number $3$, but its chromatic number becomes $2$ after deleting any edge or vertex.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)

Additional thanks to: Raphael Steiner

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #834, https://www.erdosproblems.com/834, accessed 2025-11-15