If $d_G(n)$ exists then determine the best possible value of $d_G(n)$.
If $d_G(n)$ exists then determine the best possible value of $d_G(n)$.
The Kürschák competition in Hungary in 1986 asked students to prove that $d_{K_3}(n)$ exists. Kostochka proved that $d_{K_3}(n)=n/4$ is the best possible. Tuza proved that \[d_{C_4}(n) \leq \left(\frac{1}{4}-c\right)n\] for some constant $c>0$. Brightwell and Trotter proved that \[d_{C_6}(n) > (1-o(1))\frac{n}{6}.\]