Estimate $f(n)$. In particular, is it true that $f((\log n)^2,n) \geq n^{1/2-o(1)}$? Is it true that $f((\log n)^3,n)\gg (\log n)^3$?
Estimate $f(n)$. In particular, is it true that $f((\log n)^2,n) \geq n^{1/2-o(1)}$? Is it true that $f((\log n)^3,n)\gg (\log n)^3$?
See also [805].