Let $f(n)$ be maximal such that if $B\subset (2n,4n)\cap \mathbb{N}$ there exists some $C\subset (n,2n)\cap \mathbb{N}$ such that $c_1+c_2\not\in B$ for all $c_1\neq c_2\in C$ and $\lvert C\rvert+\lvert B\rvert \geq f(n)$.
Estimate $f(n)$. In particular is it true that $f(n)\leq n^{1/2+o(1)}$?