Is it true that $H_k(n)/n^{1/2}\to \infty$? Or even $H_k(n) > n^{1/2+c}$ for some constant $c>0$?
Is it true that $H_k(n)/n^{1/2}\to \infty$? Or even $H_k(n) > n^{1/2+c}$ for some constant $c>0$?
The answer is yes, and in fact \[H_k(n) \gg_k n^{2/3},\] proved by Alon and Erdős [AlEr85]. We sketch their proof as follows: take a random subset $A'\subset A$, including each $n\in A'$ with probability $\asymp n^{-1/3}$. The number of non-trivial additive quadruples in $A$ is $\ll n^2$ and hence only $\ll n^{2/3}$ non-trivial additive quadruples remain in $A'$. Since the size of the random subset is $\gg n^{2/3}$, all of the remaining non-trivial additive quadruples can be removed by removing at most $\lvert A'\rvert/2$ (choosing the constants suitably).