Give good estimates for $f(n;k,l)$ in the range $k<l\leq k^2/4$. For fixed $k$ and large $n$ is $f(n;k,l)$ a strictly monotone function of $l$?
Give good estimates for $f(n;k,l)$ in the range $k<l\leq k^2/4$. For fixed $k$ and large $n$ is $f(n;k,l)$ a strictly monotone function of $l$?