Logo
All Random Solved Random Open
SOLVED
How large should $\ell(n)$ be such that, almost surely, a random $3$-uniform hypergraph on $3n$ vertices with $\ell(n)$ edges must contain $n$ vertex-disjoint edges?
Asked to Erdős by Shamir in 1979. This is often known as Shamir's problem. Erdős writes: 'Many of the problems on random hypergraphs can be settled by the same methods as used for ordinary graphs and usually one can guess the answer almost immediately. Here we have no idea of the answer.'

This is now essentially completely understood: Johansson, Kahn, and Vu [JKV08] proved that the threshold is $\ell(n)\asymp n\log n$. The precise asymptotic was given by Kahn [Ka23], proving that the threshold is $\sim n\log n$ (also for the general problem over $r$-uniform hypergraphs).

Additional thanks to: Mehtaab Sawhney