Dual View Random Solved Random Open
PROVED This has been solved in the affirmative.
Let $k\geq 4$. If $\mathcal{F}$ is a family of subsets of $\{1,\ldots,n\}$ with $\lvert A\rvert=k$ for all $A\in \mathcal{F}$ and $\lvert \mathcal{F}\rvert >\binom{n-2}{k-2}$ then there are $A,B\in\mathcal{F}$ such that $\lvert A\cap B\rvert=1$.
A conjecture of Erdős and Sós. Katona (unpublished) proved this when $k=4$, and Frankl [Fr77] proved this for all $k\geq 4$.

See also [703].

View the LaTeX source

This page was last edited 16 October 2025.

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #702, https://www.erdosproblems.com/702, accessed 2025-11-16