Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation.
Given $A\subseteq \mathbb{N}$ let $M_A=\{ n \geq 1 : a\mid n\textrm{ for some }a\in A\}$ be the set of multiples of $A$. Find a necessary and sufficient condition on $A$ for $M_A$ to have density $1$.
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
If $A$ is a set of prime numbers (or, more generally, a set of pairwise coprime integers without $1$) then a necessary and sufficient condition is that $\sum_{p\in A}\frac{1}{p}=\infty$.

The general situation is more complicated. For example suppose $A$ is the union of $(n_k,(1+\eta_k)n_k)\cap \mathbb{Z}$ where $1\leq n_1<n_2<\cdots$ is a lacunary sequence. If $\sum \eta_k<\infty$ then the density of $M_A$ exists and is $<1$. If $\eta_k=1/k$, so $\sum \eta_k=\infty$, then the density exists and is $<1$.

Erdős writes it 'seems certain' that there is some threshold $\alpha\in (0,1)$ such that, if $\eta_k=k^{-\beta}$, then the density of $M_A$ is $1$ if $\beta <\alpha$ and the density is $<1$ if $\beta >\alpha$.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)

Additional thanks to: Desmond Weisenberg

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #691, https://www.erdosproblems.com/691, accessed 2025-11-16