In [Er73] Erdős says it is not even known in $\mathbb{R}$ whether $f(n)\to \infty$. Sarosh Adenwalla has observed that this is equivalent to minimising the number of distinct differences in a set $A\subset \mathbb{R}$ of size $n$ without three-term arithmetic progressions. Dumitrescu [Du08] proved that, in these terms, \[(\log n)^c \leq f(n) \leq 2^{O(\sqrt{\log n})}\] for some constant $c>0$.
Straus has observed that if $2^k\geq n$ then there exist $n$ points in $\mathbb{R}^k$ which contain no isosceles triangle and determine at most $n-1$ distances.
See also [656].